

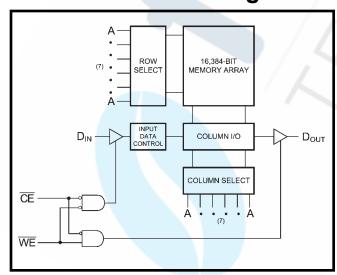
FT6167/FT6167L

ULTRA HIGH SPEED 16K X 1 STATIC CMOS RAMS

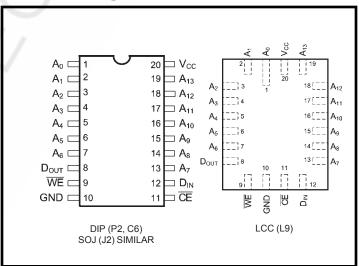
Features

- Full CMOS, 6T Cell
- High Speed (Equal Access and Cycle Times)
 - 10/12/15/20/25 ns (Commercial)
 - 12/15/20/25/35 ns (Industrial)
 - 15/20/25/35/45 ns (Military)
- **■** Low Power Operation
- Single 5V±10% Power Supply
- Data Retention with 2.0V Supply (FT6167L Military)

- Separate Data I/O
- Three-State Output
- TTL Compatible Output
- Fully TTL Compatible Inputs
- Standard Pinout (JEDEC Approved)
 - 20-Pin 300 mil DIP
 - 20-Pin 300 mil SOJ
 - 20-Pin LCC


Description

The FT6167/L are 16,384-bit high speed static RAMs organised as 16K x 1. The CMOS memories require no clocks or refreshing and have equal access and cycle times. The RAMs operate from a single 5V \pm 10% tolerance power supply. Data integrity is maintained for supply voltages down to 2.0V, typically drawing 10 μ A.


Access times as fast as 10 nanoseconds are available, greatly enhancing system speeds. CMOS reduces power consumption to low levels.

The FT6167/L are available in 20-pin 300 mil DIP, 20-pin 300 mil SOJ, and 20-pin LCC packages providing excellent board level densities.

Functional Block Diagram

Pin Configurations

Maximum Ratings

Symbol	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +7	V
$V_{\scriptscriptstyle TERM}$	Terminal Voltage with Respect to GND (up to 7.0V)	–0.5 to V _{cc} +0.5	٧
T _A	Operating Temperature	-55 to +125	°C

Symbol	Parameter	Value	Unit
T _{BIAS}	Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	50	mA

Recommended Operating Conditions

Grade(2)	Ambient Temperature	GND	V _{cc}
Military	–55°C to +125°C	0V	5.0V ± 10%
Industrial	-40°C to +85°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	5.0V ± 10%

Capacitance (4)

 $V_{cc} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz$

Symbol	Parameter	Conditions	Тур.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	5	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	7	pF

DC Electrical Characteristics

Over recommended operating temperature and supply voltage(2)

Symbol	Daramatar	Toot Conditions	FT6	6167	FT6	167L	Unit
Symbol	Parameter	Test Conditions	Min	Max	Min	Max	Unit
V _{IH}	Input High Voltage		2.2	V _{cc} +0.5	2.2	V _{cc} +0.5	V
V _{IL}	Input Low Voltage		-0.5 ⁽³⁾	0.8	-0.5 ⁽³⁾	0.8	V
V_{HC}	CMOS Input High Voltage		V _{CC} -0.2	V _{cc} +0.5	V _{CC} -0.2	V _{cc} +0.5	V
V_{LC}	CMOS Input Low Voltage		-0.5 ⁽³⁾	0.2	-0.5(3)	0.2	V
V _{CD}	Input Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$		-1.2		-1.2	V
V _{OL}	Output Low Voltage (TTL Load)	I_{OL} = +8 mA, V_{CC} = Min.		0.4		0.4	V
V _{OH}	Output High Voltage (TTL Load)	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}.$	2.4		2.4		V
I _{LI}	Input Leakage Current	V_{CC} = Max. Mil. V_{IN} = GND to V_{CC} Com'l.	-10 -5	+10 +5	–5 n/a	+5 n/a	μA
I _{LO}	Output Leakage Current	$V_{CC} = Max., \overline{CE} = V_{IH},$ Mil. $V_{OUT} = GND \text{ to } V_{CC}$ Com'l.	–10 –5	+10 +5	–5 n/a	+5 n/a	μA
l _{SB}	Standby Power Supply Current (TTL Input Levels)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		30 20		20 n/a	mA
I _{SB1}	Standby Power Supply Current (CMOS Input Levels)	$\begin{tabular}{ c c c c c }\hline \hline $\overline{CE} \ge V_{HC}$ & Mil.\\ $V_{CC} = Max., & Ind./Com'l.\\ $f = 0, Outputs Open$\\ $V_{IN} \le V_{LC}$ or $V_{IN} \ge V_{HC}$\\ \hline \end{tabular}$		15 10		1.0 n/a	mA

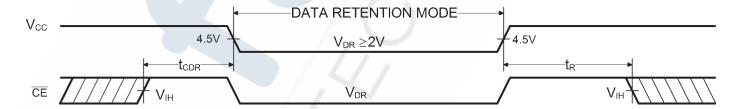
n/a = Not Applicable

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with V $_{\rm L}$ and I $_{\rm L}$ not more negative than $-3.0{\rm V}$ and $-100{\rm mA}$, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.

Power Dissipation Characteristics Vs. Speed

Symbol	Parameter	Temperature Range	-10	-12	-15	-20	-25	-35	-45	Unit
		Commercial	180	170	160	155	150	N/A	N/A	mA
I _{cc}	Dynamic Operating Current*	Industrial	N/A	180	170	160	155	150	N/A	mA
		Military	N/A	N/A	170	160	155	150	145	mA


^{*} V_{CC} = 5.5V. Tested with outputs open. f = Max. Switching inputs are 0V and 3V. $\overline{CE} = V_{IL}$.

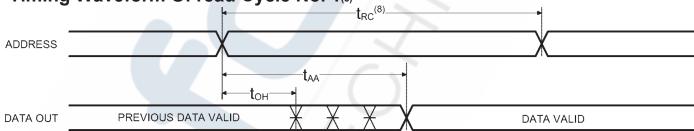
Data Retention Characteristics (FT6167L Military Temperature Only)

Symbol	Parameter	Test Conditons	Min	Ty V _c 2.0V			ax c = 3.0V	Unit
V _{DR}	V _{cc} for Data Retention		2.0					V
I _{CCDR}	Data Retention Current	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V},$		10	15	600	900	μA
t _{CDR}	Chip Deselect to Data Retention Time	$V_{IN} \ge V_{CC} - 0.2V$	0					ns
t_R^{\dagger}	Operation Recovery Time	or $V_{IN} \le 0.2V$	t _{RC} §					ns

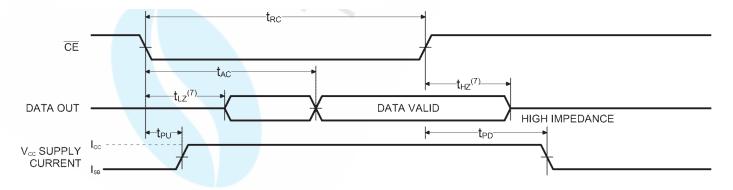
 $^{^{*}}T_{A} = +25^{1}C$

Data Retention Waveform

 $[\]St_{RC}$ = Read Cycle Time


[†] This parameter is guaranteed but not tested.

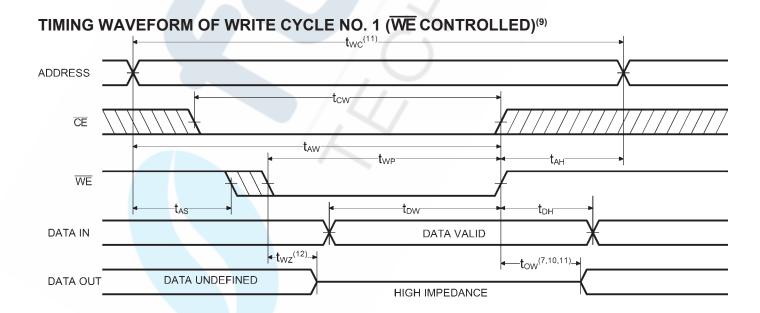
AC Characteristics - Read Cycle


 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

			10	<u> </u>	12	_	15	-2	20	<u>-</u>	25	/ →	35	_	45	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t_{RC}	Read Cycle Time	10		12		15		20		25		35		45		ns
t _{AA}	Address Access Time		10		12		15		20		25		35	4	45	ns
t _{AC}	Chip Enable Access Time		10		12		15		20		25		35		45	ns
t _{OH}	Output Hold from Address Change	2		2		2		2		2		2		2		ns
t _{LZ}	Chip Enable to Output in Low Z	2		2		2		2		2	/ /	2		2		ns
t_{HZ}	Chip Disable to Output in High Z		5		6		8		10		12		17		20	ns
t _{PU}	Chip Enable to Power Up Time	0		0		0		0		0		0		0		ns
t _{PD}	Chip Disable to Power Down Time		10		12		15		20		25		35		45	ns

Timing Waveform Of read Cycle No. 1(5)

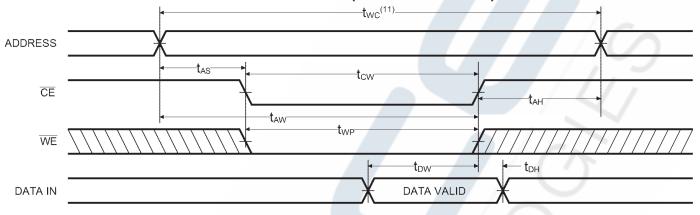
Timing Waveform Of Read Cycle No.2(6)


Notes:

- 5. $\overline{\text{CE}}$ is LOW and $\overline{\text{WE}}$ is HIGH for READ cycle.
- WE is HIGH, and address must be valid prior to or coincident with CE transition LOW.
- Transition is measured ±200mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.
- 8. Read Cycle Time is measured from the last valid address to the first transitioning address.

AC CHARACTERISTICS - WRITE CYCLE

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$


0	D		10		12	_	15	-2	20	-	25	-	35	-4	45	1124
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{wc}	Write Cycle Time	10		12		15		20		25		35		45	, ~	ns
t _{cw}	Chip Enable Time to End of Write	8		10		2		15		20		25		30		ns
t _{AW}	Address Valid to End of Write	8		10		12		15		20		25		30		ns
t _{AS}	Address Set-up Time	0		0		0		0		0		0	Ú	0		ns
t_{WP}	Write Pulse Width	8		10		12		15		20	/ /	25		30		ns
t _{AH}	Address Hold Time from End of Write	0		0		0		0		0		0		0		ns
t _{DW}	Data Valid to End of Write	6		7		10		13		15		20		25		ns
t _{DH}	Data Hold Time	0		0		0		0		0		0		0		ns
t _{wz}	Write Enable to Output in High Z		6		7		8		12		15		17		20	ns
t _{ow}	Output Active from End of Write	0		0		0		0		0		0		0		ns

Notes:

- 9. $\overline{\text{CE}}$ and $\overline{\text{WE}}$ must be LOW for WRITE cycle.
- 10. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high impedance state.
- 11. Write Cycle Time is measured from the last valid address to the first transition address.

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CE CONTROLLED)(9)

DATA OUT

HIGH IMPEDANCE

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

TRUTH TABLE

Mode	Œ	WE	Output	Power
Standby	Н	X	High Z	Standby
Read	L	Н	D _{out}	Active
Write	L	L	High Z	Active

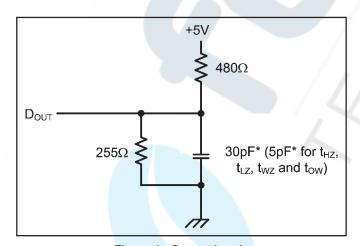
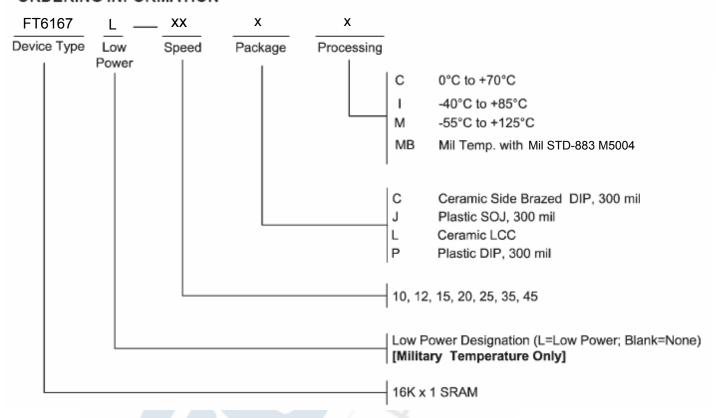


Figure 1. Output Load

Figure 2. Thevenin Equivalent

* including scope and test fixture.


Note:

Due to the ultra-high speed of the FT6167/L, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the $V_{\rm CC}$ and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor is also required between $V_{\rm CC}$ and ground. To avoid signal reflections,

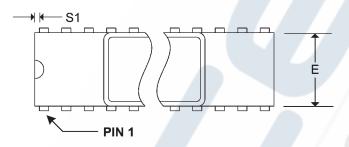
proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.73V (Thevenin Voltage) at the comparator input, and a 116Ω resistor must be used in series with D_{OUT} to match 166Ω (Thevenin Resistance).

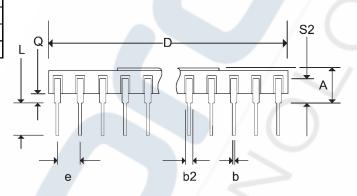
 $R_{TH} = 166.5\Omega$ $V_{TH} = 1.73 \text{ V}$ $V_{TH} = 1.73 \text{ V}$ $V_{TH} = 1.73 \text{ V}$ $V_{TH} = 1.73 \text{ V}$

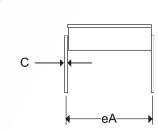
ORDERING INFORMATION

SELECTION GUIDE

The FT6167/L is available in the following temperature, speed and package options.

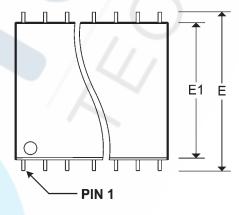

Temperature	Dealesse		///	/ .	Speed (ns)			
Range	Package	10	12	15	20	25	35	45
Commercial	Plastic DIP	-10PC	-12PC	-15PC	-20PC	-25PC	N/A	N/A
	Plastic SOJ	-10JC	-12JC	-15JC	-20JC	-25JC	N/A	N/A
Industrial	Plastic DIP	N/A	-12PI	-15PI	-20PI	-25PI	-35PI	N/A
	Plastic SOJ	N/A	-12JI	-15JI	-20JI	-25JI	-35JI	N/A
Military	Side Brazed DIP	N/A	N/A	-15CM	-20CM	-25CM	-35CM	-45CM
Temperature	LCC	N/A	N/A	-15LM	-20LM	-25LM	-35LM	-45LM
Military	Side Brazed DIP	N/A	N/A	-15CMB	-20CMB	-25CMB	-35CMB	-45CMB
Processed*	LCC	N/A	N/A	-15LMB	-20LMB	-25LMB	-35LMB	-45LMB

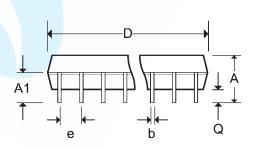

^{*} Military temperature range with MIL-STD-883 M5004

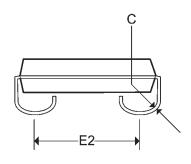

N/A = Not Available

Pkg #	C6	
# Pins	20 (300 mil)	
Symbol	Min	Max
Α	-	0.200
b	0.014	0.026
b2	0.045	0.065
С	0.008	0.018
D	-	1.060
E	0.220	0.310
eA	0.300 BSC	
е	0.100 BSC	
L	0.125	0.200
Q	0.015	0.070
S1	0.005	-
S2	0.005	-

SIDE BRAZED DUAL IN-LINE PACKAGE

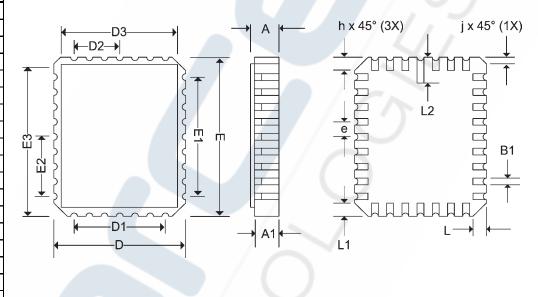


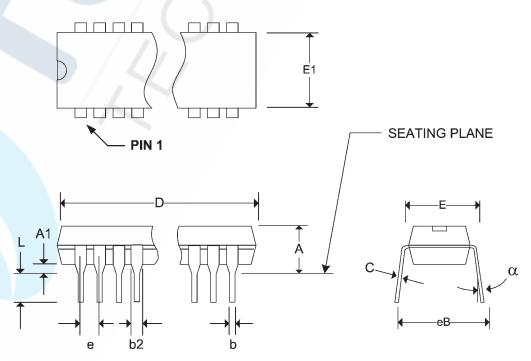




Dka #		2
Pkg #	J2	
# Pins	20 (300 mil)	
Symbol	Min	Max
Α	0.120	0.140
A1	0.080	-
b	0.014	0.020
С	0.008	0.013
D	0.496	0.512
е	0.050 BSC	
Е	0.335	0.347
E1	0.292	0.300
E2	0.267 BSC	
Q	0.025	-

SOJ SMALL OUTLINE IC PACKAGE




Pkg#	L9	
# Pins	20	
Symbol	Min	Max
Α	0.060	0.075
A1	0.050	0.066
B1	0.022	0.028
D	0.280	0.305
D1	0.150 BSC	
D2	0.075 BSC	
D3	-	0.305
Е	0.420	0.440
E1	0.250 BSC	
E2	0.125 BSC	
E3	- 0.440	
е	0.050 BSC	
h	0.020 REF	
j	0.010 REF	
L	0.045	0.055
L1	0.045	0.055
L2	0.075	0.098
ND	4	
NE	6	

RECTANGULAR LEADLESS CHIP CARRIER

Pkg#	P2	
# Pins	20 (300 mil)	
Symbol	Min	Max
Α	-	0.210
A1	0.015	-
b	0.014	0.022
b2	0.045	0.070
С	0.008	0.014
D	0.980	1.060
E1	0.240	0.280
Е	0.300	0.325
е	0.100 BSC	
eB	-	0.430
L	0.115	0.150
α	0°	15°

PLASTIC DUAL IN-LINE PACKAGE

REVISIONS

DOCUMENT NUMBER: SRAM106

DOCUMENT TITLE: FT6167 / FT6167L ULTRA HIGH SPEED 16K x 1 STATIC CMOS RAMS

REV.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE
ORIG	1997	M.S	New Data Sheet
			1/(5
) / (/ /

Ashley Crt, Henley, Marlborough, Wilts, SN8 3RH UK

Tel: +44(0)1264 731200 Fax:+44(0)1264 731444

E-mail

sales@forcetechnologies.co.uk

www.forcetechnologies.co.uk

Unless otherwise stated in this SCD/Data sheet, Force Technologies Ltd reserve the right to make changes, without notice, in the products, Includ -ing circuits, cells and/or software, described or contained herein in order to improve design and/or performance. Force Technologies resumes no responsibility or liability for the use of any of these products, conveys no licence or any title under patent, copyright, or mask work to these products, and makes no representation or warranties that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies for any damages resulting from such improper use or sale.

All trademarks acknowledged

Copyright Force Technologies Ltd 2008