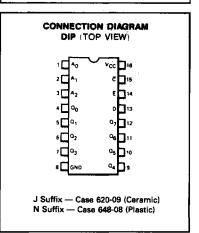
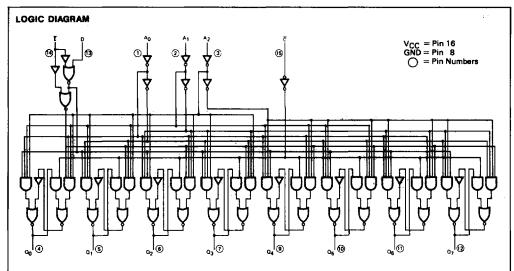


DESCRIPTION — The SN54LS/74LS259 is a high-speed 8-Bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW common Clear for resetting all latches, as welf as, an active LOW Enable.

- SERIAL-TO-PARALLEL CONVERSION
- EIGHT BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEXING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- COMMON CLEAR

PIN NAMES	•	LOADIN	G (Note a)
		HIGH	LOW
Ag. A1. A2	Address Inputs	0.5 U.L.	0.25 U.L.
D E	Data Input	0.5 U.L.	0.25 U.L.
Ē	Enable (Active LOW) Input	1.0 U.L.	0.5 U.L.
Ē	Clear (Active LOW) Input	0.5 U.L.	0.25 U.L.
O _O to O ₇	Parallel Latch Outputs (Note b)	10 U.L.	5(2.5) U.L.


NOTES:


- a. 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Militery (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS259

8-BIT ADDRESSABLE LATCH

LOW POWER SCHOTTKY

SN54/74LS259

FUNCTIONAL DESCRIPTION — The SN54LS/74LS259 has four modes of operation as shown in the mode selection table. In the addressable latch mode, data on the Data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remain in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other inputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs.

When operating the SN54LS/74LS259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

The truth table below summarizes the operations.

MODE SELECTION

TRUTH TABLE

	c	MODE
LH	н	Addressable Latch
H t	н	Memory
L 1	니	Active HIGH Eight-Channel
		Demultiplexer
HI	니	Clear

							F	PRESEN	IT OUTP	UTST	ATES			
ĉ	Ē	D	Αo	Αţ	A ₂	Qo	Q ₁	02	Qз	04	Q ₅	Q6	Ω7	MODE
L	Н	х	х	х	х	L		L	L	L	L	L	L	Clear
L	Ł	L	L	Ļ	L	L	L	L	L	L	L	Ĺ	Ē	Demultiplex
L	L	Н	L	Ł	L	H	L	L	L	L	L	L	L	
L	L	L	н	L	L	L	L	Ļ	L	L	L	L	L	
L	L	Н	Н	L	L	l	Н	L	Ł	L	L	L	L	
•	•	•		٠					•					
•	•	•		•					•					
•	•	•		•					•					
•	•	٠		•					•					
•	•	•		•					•					
ᆫ	L	Н	н		Н	L	L	L	L	L	L	L	н	
Н	Н	х	х	Х	Х	Q _{N-1}							-	Memory
Н	1	1	L	L	L	L	QN-1	QN-1	Q _{N-1}					Addressable
Н	L	Н	L	L	L	H		QN-1					-	Latch
Н	L	L	Н	L	i.	Q _{N-1}		QN-1						
Н	L	Н	Н	L	Ł	Q _{N-1}	н	QN-1						
•	•	•		•		ļ			•					
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
!	•	•		•		_			•					
н	L	L	Н	Н	н	Q _{N-1}					-	QN-1	L	
Н	L	Н	Н	Н	Н	Q _{N-1}						QN-1	Н	

X = Don't Care Condition

L = LOW Voltage Level H = HIGH Voltage Level

Q_{N-1} = Previous Output State

GUARANTEED OPERATING RANGES

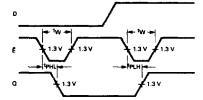
SYMBOL	PARAMETER		MIN	TYP	MÁX	UNIT
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	65 0	25 25	125 70	°C
ЮН	Output Current — High	54,74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74L8259

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

OVERDO:	PARAMETER		LIMITS			LINUTO	TEST COMPETIONS		
SYMBOL			MIN TYP I		MAX	UNITS	TEST CONDITIONS		
VIH	Input HIGH Voltage	2.0			٧	Guaranteed in All Inputs	put HIGH Voltage for		
		54			0.7	.,	Guaranteed Input LOW Voltage for		
V _{IL}	Input LOW Voltage 74				0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage	je		-0.65	-1.5	v	VCC = MIN, IIN = -18 mA		
		54	2.5	3.5		٧	VCC = MIN, IOH = MAX, VIN =		
Vон	Output HIGH Voltage	74	2.7	3.5		٧	or VIL per Trut	Table	
		54,74		0.25	0.4	٧	IOL = 4.0 mA	VCC = VCC MIN,	
VOL	Output LOW Voltage	74		0.35	0.5	٧	IOL = 8.0 mA	VIN = VIL or VIH per Truth Table	
				[20	μΑ	VCC = MAX, V	/ _{IN} = 2.7 ∨	
ЧН	Input HIGH Current			0.1	mA	VCC = MAX, V	/IN = 7.0 V		
կլ_	Input LOW Current			-0.4	mA	VCC = MAX, V	/IN = 0.4 V		
ios	Short Circuit Current	-20		-100	mA	V _{CC} = MAX			
lcc	Power Supply Current	;-		36	mA	V _{CC} = MAX			

AC CHARACTERISTICS: $T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$


SYMBOL		[LIMITS		UNITS	CONDITIONS	
	PARAMETER	MIN	TYP	MAX	UNITS		
tPLH	Turn-Off Delay, Enable to Output	1	22	35	ns		
PHL	Turn-On Delay, Enable to Output		15	24	ns		
†PLH	Turn-Off Delay, Data to Output		20	32	ns		
TPHL	Turn-On Delay, Data to Output		13	21	ns	C _L = 15 pF	
tPLH	Turn-Off Delay, Address to Output		24	38	ns	· ·	
tPHL .	Turn-On Delay, Address to Output		18	29	ns		
tPHL	Turn-On Delay, Clear to Output		17	27	กร		

AC SETUP REQUIREMENTS: $T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$

SYMBOL	DADAMETER		LIMITS	1	LIMITO
	PARAMETER		TYP	MAX	UNITS
ts	Input Setup Time	20			ns
w	Pulse Width, Clear or Enable	15			ns
th	Hold Time, Data	5.0			ns
th	Hold Time, Address	20			ns

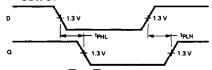

AC WAVEFORMS

Fig. 1 TURN-ON AND TURN-OFF DELAYS, ENABLE TO OUTPUT AND ENABLE PULSE WIDTH

OTHER CONDITIONS: C = H, A = STABLE

Fig. 2 TURN-ON AND TURN-OFF DELAYS, DATA TO OUTPUT

OTHER CONDITIONS: E = L, C = H, A = STABLE

Fig. 3 TURN-ON AND TURN-OFF DELAYS, ADDRESS TO OUTPUT

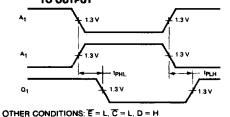
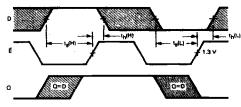



Fig. 4 SETUP AND HOLD TIME, DATA TO ENABLE

OTHER CONDITIONS: T = H, A = STABLE

Fig. 5 TURN-ON DELAY, CLEAR TO OUTPUT

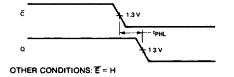
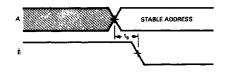



Fig. 6 SETUP TIME, ADDRESS TO ENABLE (SEE NOTES 1 AND 2)

OTHER CONDITIONS: C = H

NOTES:

- The Address to Enable Setup Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
- 2. The shaded areas indicate when the inputs are permitted to change for predictable output performance.