

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

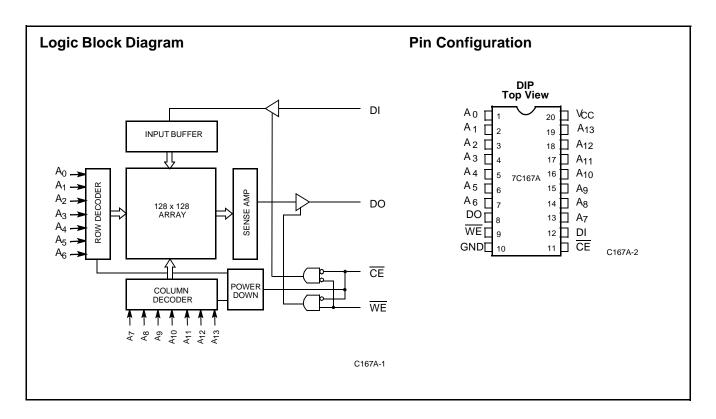
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

16K x 1 Static RAM

Features

- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- High speed
 - -15 ns
- · Low active power
 - -495 mW
- · Low standby power
 - -220 mW
- TTL-compatible inputs and outputs
- · Capable of withstanding greater than 2001V electrostatic discharge
- V_{IH} of 2.2V

Functional Description


The CY7C167A is a high-performance CMOS static RAM organized as 16,384 words by 1 bit. Easy memory expansion is provided by an active LOW Chip Enable (CE) and three-state drivers. The CY7C167A has an automatic power-down feature, reducing the power consumption by 67% when deselected.

Writing to the device is accomplished when the Chip Select (CE) and Write Enable (WE) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_0 through A_{13}).

Reading the device is accomplished by taking the Chip Enable (CE) LOW, while (WE) remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the data output (DO) pin.

The output pin remains in a high-impedance state when Chip Enable is HIGH, or Write Enable (WE) is LOW.

A die coat is used to insure alpha immunity.

Selection Guide

	7C167A-15	7C167A-20	7C167A-25	7C167A-35	7C167A-45
Maximum Access Time (ns)	15	20	25	35	45
Maximum Operating Current (mA)	90	90	90	90	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential DC Voltage Applied to Outputs

DC Input Voltage	3.0V to +7.0V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

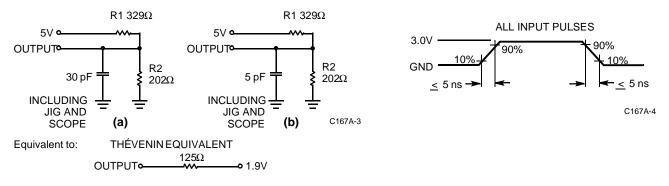
Range	Ambient Temperature ^[1]	V _{CC}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

			7C16	7A-15	7C16	7A-20	7C16		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output High Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output Low Voltage	V _{CC} = Min., I _{OL} = 12.0 mA, 8.0 mA Mil		0.4		0.4		0.4	V
V _{IH}	Input High Voltage		2.2	V _{CC}	2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input Low Voltage ^[2]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_1 \leq V_{CC}$	-10	+10	-10	+10	-10	+10	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} & GND \leq V_{O} \leq V_{CC} \\ & Output Disabled \end{aligned}$	-10	+10	-10	+10	-10	+10	μА
I _{OS}	Output Short Circuit Current ^[3]	$V_{CC} = Max., V_{OUT} = GND$		-350		-350		-350	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA$		90		90		90	mA
I _{SB}	Automatic CE Power-Down Current ^[4]	Max. V _{CC} , CE ≥ V _{IH}		40		40		20	mA

			7C16	7A-35	7C16	7A-45	
Parameter	Parameter Description Test Condition		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output High Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V _{OL}	Output Low Voltage	V _{CC} = Min., I _{OL} = 12.0 mA, 8.0 mA Mil		0.4		0.4	V
V _{IH}	Input High Voltage		2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input Low Voltage[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-10	+10	-10	+10	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}} \\ & \text{Output Disabled} \end{aligned}$	-10	+10	-10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-350		-350	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		90		90	mA
I _{SB}	Automatic CE Power-Down Current ^[4]	Max. V_{CC} , $\overline{CE} \ge V_{IH}$		20		20	mA

Notes:

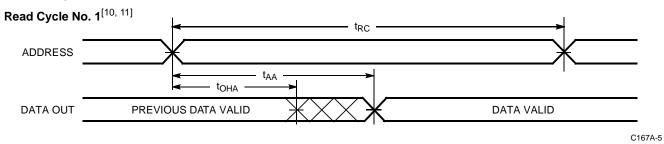

- T_A is the case temperature. V_{IL} min. = -3.0V for pulse durations less than 30 ns. Duration of the short circuit should not exceed 30 seconds. A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

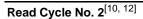
Capacitance^[5]

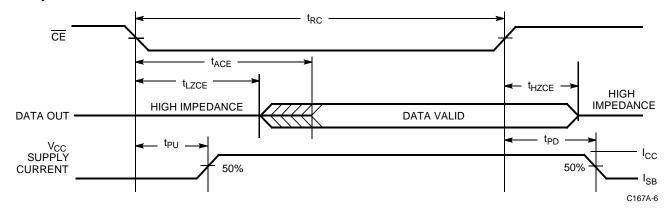
Parameter	Description	Max.	Unit	
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF
C _{CE}	Chip Enable Capacitance		6	pF

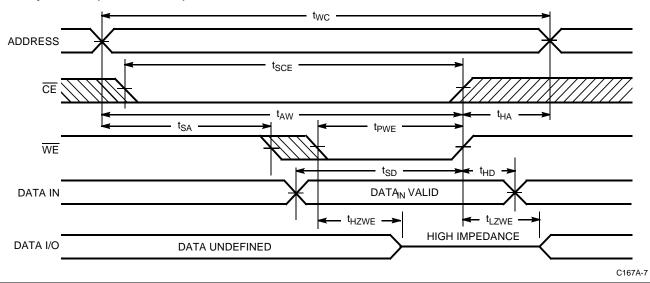
AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[6]

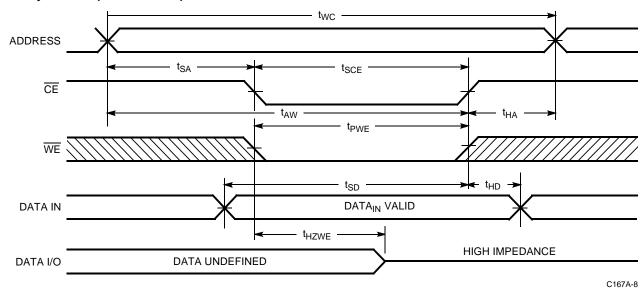

		7C16	7A-15	7C16	7A-20	7C16	7A-25	7C16	7A-35	7C16	7A-45	
Parameter	Description	Min.	Max.	Unit								
READ CYCLE							•		•		•	
t _{RC}	Read Cycle Time	15		20		25		30				ns
t _{AA}	Address to Data Valid		15		20		25		30			ns
t _{OHA}	Data Hold from Address Change	5		5		5		5		5		ns
t _{ACE}	CE LOW to Data Valid		15		20		25		35		45	ns
t _{LZCE}	CE LOW to Low Z ^[7]	5		5		5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		8		8		10		15		15	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		15		20		20		20		25	ns
WRITE CY	CLE ^[9]			•		•	•		•	•	•	
t _{WC}	Write Cycle Time	15		20		20		25		40		ns
t _{SCE}	CE LOW to Write End	12		15		20		25		30		ns
t _{AW}	Address Set-Up to Write End	12		15		20		25		30		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		15		20		20		ns
t _{SD}	Data Set-Up to Write End	10		10		10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		7		7		7		10		15	ns
t _{LZWE}	WE HIGH to Low Z ^[7]	5		5		5		5		5		ns


Notes:


- 5. 6.
- Tested initially and after any design or process changes that may affect these parameters. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device. t_{HZCE} and t_{HZWE} are tested with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signal must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 7.
- 8.


Switching Waveforms

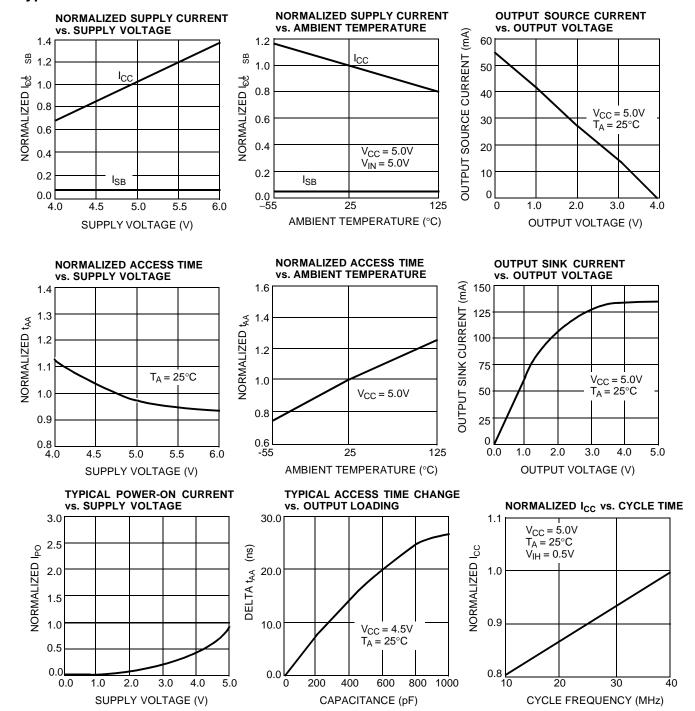
Write Cycle No. 1 (WE Controlled)^[9]


Notes:

- WE is high for read cycle.
 Device is continuously selected, CE = V_{IL}.
 Address valid prior to or coincident with CE transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)[9, 13]



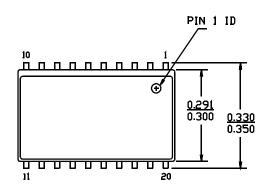
Note:

13. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

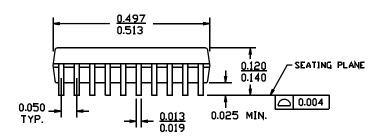
Typical DC and AC Characteristics

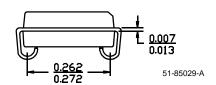

Ordering Information

Speed (ns)	I _{CC} (mA)	Ordering Code	Package Name	Package Type	Operating Range
15	80	CY7C167A-15PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-15VC	V5	20-Lead Molded SOJ	
20	80	CY7C167A-20PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-20VC	V5	20-Lead Molded SOJ	
25	60	CY7C167A-25PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-25VC	V5	20-Lead Molded SOJ	
35	60	CY7C167A-35PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-35VC	V5	20-Lead Molded SOJ	
45	50	CY7C167A-45PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-45VC	V5	20-Lead Molded SOJ]



Package Diagrams


20-Lead (300-Mil) Molded DIP P5



20-Lead (300-Mil) Molded SOJ V5

DIMENSIONS IN INCHES MIN. MAX.

Document Title: CY7C167A 16K x 1 Static RAM Document Number: 38-05027						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	106813	09/10/01	SZV	Change from Spec number: 38-00093 to 38-05027		