FEATURES

- Operating Current from $20 \mu \mathrm{~A}$ to 20 mA .
- Low Temperature Coefficient.
- 1\% and 2\% Initial Tolerance.
- Low Dynamic Impedance.

APPLICATIONS

- Portable, Battery-Powered Equipment.
- Instrumentation.
- Process Control.
- Energy Management.
- Product Testing.
- Automotive.
- Precision Audio Components.

DESCRIPTION

The LM385-2.5 is a micropower 2-terminal bandgap voltage reference, which can operate in a $20 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to achieve tight voltage tolerance. Since the LM385-2.5 bandgap reference uses only transistors and resistors, low noise and good long-term stability result.

Careful design of the LM385-2.5 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows for its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM385-2.5 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators, or general-purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance.

TYPICAL APPLICATION CIRCUIT

Precision 2.500V Voltage Reference

ORDERING INFORMATION

Example: LM385-2.5PSTR
$\rightarrow 2 \%$ version, in Lead Free SOP-8 Package \& Taping \& Reel Packing Type
LM385-2.5G STR
$\rightarrow 2 \%$ version, in SOP-8 Green Package \& Taping \& Reel Packing Type

- SOT-23 Marking

Part No.	Marking	Part No.	Marking	Part No.	Marking
LM385-25CU	AIA2	LM385-25PU	AIA2P	LM385-25GU	AIA2G
LM385B-25CU	AIB2	LM385B-25PU	AIB2P	LM385B-25GU	AIB2G

- SOT-89 Marking

Part No.	Marking	Part No.	Marking	Part No.	Marking
LM385-25CX	Al25	LM385-25PX	Al25P	LM385-25GX	AI25G
LM385B-25CX	AIB25	LM385B-25PX	Al2BP	LM385B-25GX	AI2BG

ABSOLUTE MAXIMUM RATINGS

Reverse Current30 mAForward Current 10 mA
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $260^{\circ} \mathrm{C}$
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

TEST CIRCUIT

Refer to TYPICAL APPLICATION CIRCUIT.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note1)

PARAMETER	TEST CONDITIONS		SYMBOL	MIN.	TYP.	MAX.	UNIT
Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	$\begin{aligned} & \text { LM385B-2.5 } \\ & \text { LM385-2.5 } \end{aligned}$	V_{R}	$\begin{aligned} & 2.475 \\ & 2.450 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.500 \end{aligned}$	$\begin{aligned} & 2.525 \\ & 2.550 \end{aligned}$	V
Reverse Breakdown Voltage Change with Current	$20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		$\Delta \mathrm{V}_{\mathrm{R}}$			2	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		$\Delta \mathrm{V}_{\mathrm{R}}$			20	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{f}=20 \mathrm{~Hz}$		Z_{R}		1		Ω
Minimum Operating Current			$\mathrm{I}_{\text {RMIN }}$		13	20	$\mu \mathrm{A}$
Wideband Noise (rms)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{KHz} \end{aligned}$		e_{N}		120		$\mu \mathrm{Vrms}$
Average Temperature Coefficient (Note 2)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\alpha \mathrm{V}_{\mathrm{R}}$		100		ppm/ $/{ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{Hrs}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{t}$		20		ppm

Note 1: Specifications are production tested at $\mathrm{TA}=25^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

Note 2: The average temperature coefficient is defined as the maximum deviation of reverse breakdown voltage at all measured temperatures from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, divided by $\mathrm{T}_{\text {MAX }}-\mathrm{T}_{\text {MIN }}$. The measured temperatures are $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Fig. 1 Reverse Characteristics

Fig. 3 Forward Characteristics

Fig. 5 Temperature Drift

Fig. 2 Reverse Characteristics

Fig. 4 Response Time

Fig. 6 Noise Voltage $(\mathrm{nV} / \sqrt{\mathrm{Hz}})$

BLOCK DIAGRAM

- SYMBOL

PIN DESCRIPTIONS

PIN + - sinks current with a range from $20 \mu \mathrm{~A}$ to 20 mA for normal applications. And a stable positive voltage, relative to Pin-, occurs on Pin+.

PIN - - Pin- sources current for normal application. The current value is the same as Pin+.
PIN NC - Not connected.

APPLICATION EXAMPLES

Fig. 7 Precision $1 \mu \mathrm{~A}$ to 1 mA Current Source

PHYSICAL DIMENSIONS (unit: mm)

- SOP-8

s	SOP-8	
Y		
M		
B		
O		
L	MILLIMETERS	
A	MIN.	MAX.
A1	1.35	1.75
B	0.10	0.25
C	0.33	0.51
D	0.19	0.25
E	4.80	5.00
e	3.80	4.00
H	5.80	
h	0.25	6.20
L	0.40	0.50
θ	0°	1.27

Note: 1. Refer to JEDEC MS-012AA.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .
3. Dimension "E" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

- SOT-23

$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \\ & \mathrm{~L} \end{aligned}$	SOT-23	
	MILLIMETERS	
	MIN.	MAX.
A	0.95	1.45
A1	0.05	0.15
A2	0.90	1.30
b	0.30	0.50
c	0.08	0.22
D	2.80	3.00
E	2.60	3.00
E1	1.50	1.70
e	0.95 BSC	
e1	1.90 BSC	
L	0.30	0.60
L1	0.60 REF	
θ	0°	8°

Note: 1. Refer to JEDEC MO-178.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
3. Dimension "E1" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

- SOT-89

$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{Y} \\ & \text { M } \\ & \mathrm{B} \\ & \mathrm{O} \\ & \hline \end{aligned}$	SOT-89	
	MILLIMETERS	
	MIN.	MAX.
A	1.40	1.60
B	0.44	0.56
B1	0.36	0.48
C	0.35	0.44
D	4.40	4.60
D1	1.50	1.83
E	2.29	2.60
e	1.50 BSC	
e1	3.00 BSC	
H	3.94	4.25
L	0.89	1.20

Note: 1. Refer to JEDEC TO-243AA.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension "E" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

LM385-2.5/LM385B-2.5

- TO-92 (BAG)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \\ & \mathrm{~L} \end{aligned}$	TO-92	
	MILLIMETERS	
	MIN.	MAX.
A	4.32	5.33
b	0.36	0.47
D	4.45	5.20
E	3.18	4.19
e	2.42	2.66
e1	1.15	1.39
j	3.43	
L	12.70	
S	2.03	2.66

Note: 1. Refer to JEDEC TO-226.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .
3. Dimension "A" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

- TO-92 (Tape \& Reel)

Note:
Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

