INCH-POUND MIL-M-38510/310D 3 October 2002 **SUPERSEDING** MIL-M-38510/310C 28 April 1982

DETAIL SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, AND GATES, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 Scope. This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, positive AND logic gate microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part number. The part number shall be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types</u>. The device types shall be as follows:

<u>Device type</u>	<u>Circuit</u>
01	Triple, 3-input AND gate
02	Triple, 3-input AND gate (open collector output)
03	Dual, 4-input AND gate
04	Quad, 2-input AND gate
05	Quad, 2-input AND gate (open collector output)

- 1.2.2 <u>Device class</u>. The device class shall be the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
A <u>1</u> /	GDFP5-F14 or CDFP6-F14	14	Flat pack
В <u>1</u> /	GDFP4-14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
Χ	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

FSC 5962 <u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

^{1/} Inactive case outline package (see MIL-STD-1835).

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V to +7.0 V
Input voltage range	-1.5 V at -18 mA to +5.5 V
Storage temperature range	-65° to +150°C
Maximum power dissipation, (P _D) 1/:	
Device types 01 and 02	36 mW
Device type 03	
Device types 04 and 05	48.4 mW
Lead temperature (soldering, 10 seconds)	300°C
Thermal resistance, junction to case (θ_{JC}):	
Cases A, B, C, D, X and 2	See MIL-STD-1835
Junction temperature (T _J)	

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	4.5 V minimum to 5.5 V maximum
Minimum high level input voltage (V _{IH})	2.0 V
Maximum low level input voltage (V _{IL})	0.7 V
Case operating temperature range (T _C)	-55° to +125°C

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-M-38510 - Microcircuits, General Specification for.

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARD

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

^{1/} Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

^{2/} Maximum junction temperature (T_J) may be increased during the burn-in screening and steady-state life test. However, such temperatures should not be used under normal operating conditions.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Items furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
 - 3.3.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Truth tables and logic equations. The truth tables and logic equations shall be as specified on figure 2.
- 3.3.3 <u>Schematic circuits.</u> The schematic circuits shall be submitted to the preparing activity prior to inclusion of a manufacturer's device in the specification and shall be submitted to the qualifying activity and preparing activity (DSCC-VA) as a prerequisite for qualification. All qualified manufacturers schematics shall be maintained by the preparing activity and will be available upon request.
 - 3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements</u>. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 8 (see MIL-PRF-38535, appendix A).
 - 4. VERIFICATION (QUALITY ASSURANCE PROVISIONS)
- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with, MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	Device	Li	mits	Unit
		-55°C ≤ T _C ≤ +125°C	types	Min	Max	
High level output	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IH} = 20 \text{ V}$	01, 03,	2.5		V
voltage		I _{OH} = -400 μA	04			
Low level output	V_{OL}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 4 \text{ mA}$	All		0.4	V
voltage		$V_{IL} = 0.7 \text{ V}$				
Input clamp voltage	V_{IC}	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA}$	All		-1.5	V
		T _C = 25°C				
Maximum collector	I_{CEX}	$V_{CC} = 4.5 \text{ V}, V_{IH} = 2.0 \text{ V}$	02, 05		100	μΑ
cut-off current		V _{OH} = 5.5 V				
High level input	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	All		20	μΑ
current						
High level input	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	All		100	μΑ
current						
Low level input	I _{IL}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	01, 05	-30	-380	μΑ
current			02, 03,	-30	-400	
			04			
Short circuit output	los	V _{CC} = 5.5 V <u>1</u> /	01	-15	-100	mA
current			03, 04	-15	-110	
High level supply	I _{CCH}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	01, 02		3.6	mA
current			03		2.4	
			04, 05		4.8	
Low level supply	I _{CCL}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V}$	01, 02		6.6	mA
current			03		4.4	
			04, 05		8.8	
Propagation delay time	t _{PHL}	C _L = 50 pF	01, 03,	2	30	ns
high-to-low level		$R_L = 2 k\Omega$	04]
		V _{CC} = 5.0 V	02, 05	2	45	
Propagation delay time	t _{PLH}	$C_L = 50 pF$	01, 03,	2	25	ns
low-to-high level		$R_L = 2 k\Omega$	04			
		$V_{CC} = 5.0 \text{ V}$	02, 05	2	50	

 $[\]underline{1}$ / Not more than one output should be shorted at a time.

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 9, 10, 11	1*, 2, 3, 9
Group A test requirements	1, 2, 3, 9, 10, 11	1, 2, 3, 9, 10, 11
Group C end-point electrical parameters	1, 2, 3, 5 9, 10, 11	1, 2, 3
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1 (see 4.2c).

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 6, 7, and 8 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
- 4.4.3 <u>Group C inspection.</u> Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

Pin r	number	Devic	e type 01	Device	e type 02	Device	type 03	Device	type 04	Device type 05			
					Cases								
2, X	A, B, C, and D	2, X	A, B, C, and D	2, X	A, B, C, and D	2, X	2, X A, B, C, and D		A, B, C, and D	2, X	A, B, C, and D		
1	1	NC	1A	NC	1A	NC	1A	NC	1A	NC	1A		
2	2	1A	1B	1A	1B	1A	1B	1A	1B	1A	1B		
3	3	1B	2A	1B	2A	1B	NC	1B	1Y	1B	1Y		
4	4	2A	2B	2A	2B	NC	1C	1Y	2A	1Y	2A		
5	5	NC	2C	NC	2C	NC	1D	NC	2B	NC	2B		
6	6	2B	2Y	2B	2Y	1C	1Y	2A	2Y	2A	2Y		
7	7	NC	GND	NC	GND	NC	GND	NC	GND	NC	GND		
8	8	2C	3Y	2C	3Y	1D	2Y	2B	3Y	2B	3Y		
9	9	2Y	3A	2Y	3A	1Y	2A	2Y	3A	2Y	3A		
10	10	GND	3B	GND	3B	GND	2B	GND	3B	GND	3B		
11	11	NC	3C	NC	3C	NC	NC	NC	4Y	NC	4Y		
12	12	3Y	1Y	3Y	1Y	2Y	2C	3Y	4A	3Y	4A		
13	13	3A	1C	3A	1C	2A	2D	3A	4B	3A	4B		
14	14	3B	Vcc	3B	Vcc	2B	Vcc	3B	Vcc	3B	V_{CC}		
15		NC		NC		NC		NC		NC			
16		3C		3C		NC		4Y		4Y			
17		NC		NC		NC		NC		NC			
18		1Y		1Y		2C		4A		4A			
19		1C		1C		2D		4B		4B			
20		V_{CC}		V_{CC}		V_{CC}		V_{CC}		V_{CC}			

FIGURE 1. <u>Terminal connections</u>.

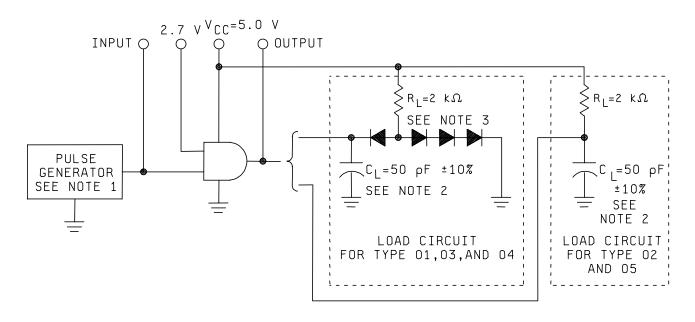
Device types 01 and 02

	Truth tabl	e (each ga	ite)
	Inputs		Output
Α	В	С	Υ
L	L	L	L
Н	L	L	L
Н	Н	L	L
Н	L	Ι	L
L	Ĺ	Н	L
Н	Н	Η	Η

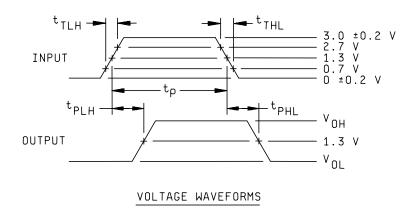
Positive logic Y = ABC

Device type 03

	Truth table (each gate)												
	Ir	nputs		Output									
Α	В	C	D	Υ									
L	L	L	L	L									
Н	L	L	L	L									
Н	Н	L	L	L									
Н	Н	Ι	L	L									
Н	Н	Н	Н	Н									


Positive logic Y = ABCD

Device types 04 and 05


Т	Truth table (each gate)												
li	nputs	Output											
Α	В	Υ											
L	L	L											
Н	L	L											
L	Н	L											
Н	Н	Н											

Positive logic Y = AB

FIGURE 2. Truth table and logic equations.

TEST CIRCUIT

NOTES:

- 1. The generator has the following characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_P = .5 μ s, PRR ≤ 1 MHz, $Z_{OUT} \cong 50\Omega$.
- 2. C_L includes probe and jig capacitance.
- 3. All diodes are 1N3064 or equivalent.

FIGURE 3. Switching time test circuit.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.7 V or open)

	Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open)																				
			Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
		MIL-STD-	A,B,C,D		_																
Subgroup	Symbol		Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Lin	nits	Unit
		method	2, X, <u>1</u> /						a) (0115	2) (terminal			igwdot
			Test no.	1A	1B	2A	2B	2C	2Y	GND	3Y	3A	3B	3C	1Y	1C	V _{CC}		Min	Max	L
1	Vон	3006	1	2.0 V	2.0 V	5.5 V	5.5 V	5.5 V		GND		5.5 V	5.5 V	5.5 V	-400 μΑ	2.0 V	4.5 V	1Y	2.5		V dc
Tc = 25°C			2	5.5 V	5.5 V	2.0 V	2.0 V	2.0 V	-400 μA	"		5.5 V	5.5 V	5.5 V		5.5 V	"	2Y	"		"
			3	5.5 V	"	5.5 V	5.5 V	5.5 V		"	-400 μΑ	2.0 V	2.0 V	2.0 V		"	"	3Y	"		"
	Vol	3007	4	0.7 V	66	"	"	"		"		5.5 V	5.5 V	5.5 V	4 mA	"	"	1Y		0.4	"
			5	5.5 V	0.7 V	66	66	"		66		**	"	"	66	"	"	1Y		"	"
			6	"	5.5 V	"	66	"		"		"	"	"	66	0.7 V	"	1Y		"	"
			7	**	66	0.7 V	"	"	4 mA	"		**	"	"		5.5 V	"	2Y		"	"
			8	"	"	5.5 V	0.7 V	"	"	"		66	"	"		"	"	2Y		"	"
			9	"	"	"	5.5 V	0.7 V	"	"		66	"	"		"	"	2Y		"	"
			10	"	"	"	"	5.5 V		"	4 mA	0.7 V	"	"		"	"	3Y		"	"
			11	66	66	"	"	"		"	"	5.5 V	0.7 V	"		"	"	3Y		"	"
			12	"	"	"	"	"		"	"	5.5 V	5.5 V	0.7 V		"	"	3Y		"	"
	V _{IC}		13	-18 mA						tt							"	1A		-1.5	"
			14		-18 mA					"							"	1B		"	"
		İ	15							íí.						-18 mA	íí	1C		"	íí
		j	16			-18 mA				tt							"	2A		"	íí
		İ	17				-18 mA			"							"	2B		"	"
			18					-18 mA		"							"	2C		"	"
			19							"		-18 mA					"	3A		"	"
			20							"		10 110 1	-18 mA				"	3B		"	"
			21							"			10 11.71	-18 mA			"	3C		"	"
	I _{IH1}	3010	22	2.7 V	GND	GND	GND	GND		"		GND	GND	GND		GND	5.5 V	1A		20	μΑ
	1111	00.0	23	GND	2.7 V	"	"	"		"		"	"	"		GND	"	1B		"	"
		+	24	"	GND	tt.	"	"		tt.		"	íí	tt.		2.7 V	"	1C		"	"
		 	25	"	"	2.7 V	"	"		"		66	"	"		GND	"	2A		"	"
			26	66	66	GND	2.7 V	"		"		66	"	"		UND	"	2B		"	"
		+	27	"	66	"	GND	2.7 V		"		"	"	"		"	"	2C		"	"
		+	28	"	"	"	"	GND		"		2.7 V	"	"			"	3A		"	"
			29	"	66	"	44	"		"		GND	2.7 V	"		"	"	3B		"	"
			30	"	66	tt.	44	"		"		"	GND	2.7 V		"	"	3C		"	"
	I _{I H 2}		31	5.5 V	"	"	"	"		"		"	"	GND		"	"	1A		100	"
	11 H 2		32	GND	5.5 V	"	"	"		"		"	"	GIVD "		"	"	1B		"	"
			33	GIVD "	GND	"	"	"		"		66	"	"		5.5 V	"	1C		"	"
			34	"	GIND "	5.5 V	"	"		"		"	"	"		GND	"	2A		"	"
		+	35	"	"	GND	5.5 V	"		"		66	"	"		GIND	"	2B		"	"
			36	"	"	GIND "	GND	5.5 V		"		66	"	"			"	2C		"	"
		+	37	66	"	"	GND "			"		EEV	"	"							"
		+	38	"	"	"	"	GND GND		"		5.5 V GND		"		"	"	3A 3B		"	"
				66	"	"	"			"			5.5 V				"			"	
		2000	39		<i>E E \ \</i>			GND		66		GND	GND	5.5 V			"	3C	4/	1/	"
	I _{I L}	3009	40	0.4 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	5.5 V	"		5.5 V	"	1A	<u>1/</u>	<u>1/</u>	"
			41	5.5 V	0.4 V	"	"	"		"		66	"	"		5.5 V	"	1B	"	"	"
			42	"	5.5 V	0.4 V	"	"		"			"	"		0.4 V	"	1C 2A	"	"	"
			43					"					44			5.5 V	"			и	"
			44		"	5.5 V	0.4 V		-	"						"		2B	"	"	"
			45	"	"	"	5.5 V	0.4 V		"			"	"		"		2C	"	"	"
			46			"		5.5 V		"		0.4 V				"	- "	3A	"	"	"
			47	"		"	"	5.5 V		"		5.5 V	0.4 V	0.417		"	"	3B	"	"	"
			48					5.5 V				5.5 V	5.5 V	0.4 V				3C			لــــــــــا

See footnotes at end of device type 01

9

TABLE III. <u>Group A inspection for device type 01</u> – Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open)

Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted.		Terminal conditions (plns not designated may be nign ≥ 2.0 v or low ≤ 0.7 v or open)																				
Method			MIL-STD-		1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Method	Subgroup	Symbol	883	Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Lim	nits	Unit
To = 25°C	Cabgicap	Cymbol																				0
TC = 25°C C				Test no.	1A	1B	2A	2B	2C	2Y	GND	3Y	3A	3B	3C	1Y	1C	V_{CC}		Min	Max	1
Same tests, terminal conditions and limits as for subgroup 1, except T _C = 125°C, and V _{1C} tests are omitted. C_C South Sout	1	l _{os}	3011	49	5.5 V	5.5 V					GND					GND	5.5 V	5.5 V	1Y	-15	-100	mA
	Tc = 25°C			50			5.5 V	5.5 V	5.5 V	GND	66							"	2Y	-15	-100	"
				51							"	GND	5.5 V	5.5 V	5.5 V			"	3Y	-15	-100	"
2 Same tests, terminal conditions and limits as for subgroup 1, except T _C = 125° C, and V _{1C} tests are omitted. 3 Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. 5 To = 25° C To = 25° C		Іссн									tt.		5.5 V	5.5 V			5.5 V	"	Vcc		3.6	"
Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55°C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55°C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55°C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55°C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55°C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55°C, and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125°C, t _{Ent} = 25 ns, and t _{Post} = 0. Same tests, terminal conditions and limits as for subgroup 9,		I _{CCL}	3005	53	GND	GND	GND	GND	GND		"		GND	GND	GND		GND	"	V _C C		6.6	"
9 TC = 25°C FH.L FIG. 3 Fig. 3	2																					
TC = 25°C Fig. 3 55 2.7 \cdot N	3	Same tes	ts, terminal	conditions a	nd limits a	s for subg	roup 1, ex	cept T _C =	-55° C, a	and V _{IC} to	ests are or	nitted.										
Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125° C, t _{PLH} = 25 ns, and t _{PHL} = 30 ns.	9	t _{PHL}	3003	54	IN	2.7 V					GND					OUT	2.7 V	5.0 V	1A to 1Y	2	20	ns
Tell Fig.	Tc = 25°C		Fig. 3	55	2.7 V	IN					tt					OUT	2.7 V	"	1B to 1Y	"	tt.	"
Technology Figure				56	2.7 V	2.7 V					"					OUT	IN	"	1C to 1Y	"	"	"
Tell Tell				57			IN	2.7 V	2.7 V	OUT	"							"	2A to 2Y	**	"	"
tpLH tpLH tpLH tpLH to the part of the				58			2.7 V	IN	2.7 V	OUT	"							"	2B to 2Y	**	"	"
t _{PLH} t _{PLH} t _{PLH} t _{OUT} t _{PLH} t _{OUT}				59			2.7 V	2.7 V	IN	OUT	"							"	2C to 2Y	"	"	"
tp_LH tp_LH tp_LH tp_LH to least set to least set the least set of subgroup 9, except T_c = 125° C, tp_LH = 25 ns, and tp_HL = 30 ns. ## OUT 2.7 V IN				60							"	OUT	IN	2.7 V	2.7 V			"	3A to 3Y	**	"	"
t _{PLH} 63 IN 2.7 V				61							"	OUT	2.7 V	IN	2.7 V			"	3B to 3Y	66	"	"
Figh				62							ű	OUT	2.7 V	2.7 V	IN			"	3C to 3Y	"	"	"
64 2.7 V IN		t _{PLH}		63	IN	2.7 V					tt					OUT	2.7 V	"	1A to 1Y	"	15	"
65 2.7 \ 2.7 \ 1N 2.7 \ 2.7 \ OUT "				64	2.7 V	IN					er.					OUT	2.7 V	"	1B to 1Y	"	"	"
10 Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125° C, t _{PLH} = 25 ns, and t _{PHL} = 30 ns.				65	2.7 V	2.7 V					tt					OUT	IN	"	1C to 1Y	"	tt.	"
68 2.7 V 2.7 V IN OUT "				66			IN	2.7 V	2.7 V	OUT	"							"	2A to 2Y	"	"	"
68				67			2.7 V	IN	2.7 V	OUT	"							"	2B to 2Y	"	"	"
10 Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125° C, t _{PLH} = 25 ns, and t _{PHL} = 30 ns.				68			2.7 V	2.7 V	IN	OUT	"							"	2C to 2Y	"	"	"
10 Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125° C, t _{PLH} = 25 ns, and t _{PHL} = 30 ns.				69							"	OUT	IN	2.7 V	2.7 V			"	3A to 3Y	"	"	"
10 Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125° C, t _{PLH} = 25 ns, and t _{PHL} = 30 ns.				70							"	OUT	2.7 V	IN	2.7 V			"	3B to 3Y	"	"	"
Same total terminal conditions and immediate days and of charter 120 of the 1				71							"	OUT	2.7 V	2.7 V	IN			"	3C to 3Y	"	"	"
Same tests, terminal conditions and limits as for subgroup 10, except $T_C = -55^{\circ}$ C.	10	Same tes	ts, terminal	conditions a	nd limits a	s for subg	roup 9, ex	cept T _C =	125° C, t	_{PLH} = 25 n	s, and t _{PHI}	= 30 ns.										
	11	Same tes	ts, terminal	conditions a	nd limits a	s for subg	roup 10, e	except T _C	= -55° C.													

^{1/} For cases X and 2, pins not referenced are NC.

$\underline{2}$ / I_{IL} limits in μA are as follows:

Circuit	А	В	С	D	E	F
I _{IL}	-120/-360	-30/-300	-160/-400	-120/-360	-150/-380	-105/-345

TABLE III. Group A inspection for device type 02.

Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open)

						minai co	naitions	(pins not	aesigna	ited may	be nign	≥ 2.0 ∨ (or low \leq ()./ V or (open)						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases 2, X, <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	1A	1B	2A	2B	2C	2Y	GND	3Y	3A	3B	3C	1Y	1C	V _{CC}		Min	Max	
1	Vol	3007	1	0.7 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	5.5 V	5.5 V	4 mA	5.5 V	4.5 V	1Y		0.4	V dc
Tc = 25°C	- 01		2	5.5 V	0.7 V	"	"	"		"		"	"	"	"	5.5 V	"	1Y		"	"
			3	66	5.5 V	"	"	"		"		"	"	"	66	0.7 V	"	1Y		"	"
			4	66	"	0.7 V	"	"	4 mA	"		"	"	"		5.5 V	"	2Y		"	"
			5	"	"	5.5 V	0.7 V	"	"	"		"	"	"		"	"	2Y		"	"
			6	"	"	"	5.5 V	0.7 V	"	íí.		"	íí.	"		"	"	2Y		"	"
			7	66	"	"	66	5.5 V	"	"	4 mA	0.7 V	"	"		"	"	3Y		"	"
			8	66	"	"	66	"		"	"	5.5 V	0.7 V	"		"	"	3Y		"	"
			9	66	"	"	66	"		"	"	5.5 V	5.5 V	0.7 V		"	"	3Y		"	"
	I _{CEX}		10	2.0 V	"	"	"	"		"		"	"	5.5 V	5.5 V	"	"	1Y		100	μA
	-		11	5.5 V	2.0 V	"	66	"		"		"	íí.	"	"	"	"	1Y		"	"
			12	ii	5.5 V	"	"	"		"		t t	"	££	66	2.0 V	"	1Y		íí	"
			13	íí.	"	2.0 V	66	"	5.5 V	"		"	"	í,		5.5 V	"	2Y		"	
			14	íí.	"	5.5 V	2.0 V	"	"	66		"	"	í,		"	"	2Y		"	u
			15	íí.	"	"	5.5 V	2.0 V	"	66		"	"	í,		"	"	2Y		"	u
			16	íí.	"	"	66	5.5 V		"	5.5 V	2.0 V	66	"		"	"	3Y		"	u
			17	66	"	"	66	"		"	"	5.5 V	2.0 V	"		"	"	3Y		"	"
			18	"	"	"	"	"		"	"	5.5 V	5.5 V	2.0 V		"	"	3Y		"	"
	V _{IC}		19	-18 mA						"							"	1A		-1.5	V dc
			20		-18 mA					"							"	1B		"	"
			21							"						-18 mA	"	1C		"	"
			22			-18 mA				íí.							"	2A		"	u
			23				-18 mA			"							"	2B		"	tt
			24					-18 mA		"							"	2C		"	tt
			25							"		-18 mA					"	3A		"	tt
			26							"			-18 mA				"	3B		"	tt
			27							"				-18 mA			"	3C		"	u
	I _{IH1}	3010	28	2.7 V	GND	GND	GND	GND		"		GND	GND	GND		GND	5.5 V	1A		20	μΑ
			29	GND	2.7 V	"	66	"		íí.		**	íí.	"		GND	"	1B		"	tt.
			30	"	GND	"	"	"		"		"	"	"		2.7 V	"	1C		"	"
			31	"	"	2.7 V	"	"		"		"	"	ű		GND	"	2A		"	"
			32	"	"	GND	2.7 V	"		"		"	"	"		"	"	2B		"	"
			33	"	"	"	GND	2.7 V		"		"	"	"		"	"	2C		"	"
			34	"	"	"	"	GND		"		2.7 V	"	"		"	"	3A		"	"
			35	"	"	"	"	"		"		GND	2.7 V	"		"	"	3B		"	"
			36	"	"	11	"	"		"		**	GND	2.7 V		"	"	3C		"	"
	I_{1H2}		37	5.5 V	"	"	"	"		"		"	"	GND		"	"	1A		100	"
			38	GND	5.5 V	"	"	"		"		"	"	tt		"	"	1B		"	"
			39	"	GND	"	"	"		"		"	ű	"		5.5 V	"	1C		"	"
			40	"	"	5.5 V	"	"		"		"	"	"		GND	"	2A		"	"
			41	"	"	GND	5.5 V	"		"		"	ű	"		"	"	2B		"	"
			42	66	"	"	GND	5.5 V		"		"	ű	"		"	"	2C		"	íí
			43	"	"	"	"	GND		"		5.5 V	"	"		"	"	3A		"	"
			44	"	"	"	"	GND		"		GND	5.5 V	"		"	"	3B		"	"
			45	"	"	"	"	GND		"		GND	GND	5.5 V		"	"	3C		"	"

See footnotes at end of device type 02

TABLE III. <u>Group A inspection for device type 02</u> – Continued.

Terminal conditions (pins not designated may be high > 2.0 V or low < 0.7 V or open)

					Ter	minal co	nditions	(pins not	designa	ated may	be high	≥ 2.0 V d	or low ≤ 0	0.7 V or 0	open)						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases 2, X, <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	1A	1B	2A	2B	2C	2Y	GND	3Y	3A	3B	3C	1Y	1C	V _{CC}	1 1	Min	Max	
1	I _{I L}	3009	46	0.4 V	5.5 V	5.5 V	5.5 V	5.5 V		GND		5.5 V	5.5 V	5.5 V		5.5 V	5.5 V	1A	2/	<u>2</u> /	μΑ
Tc = 25°C			47	5.5 V	0.4 V	"	"	"		"		"	ű	"		5.5 V	"	1B	"	"	. "
			48	"	5.5 V	"	"	"		"		"	"	"		0.4 V	"	1C	"	"	"
			49	"	**	0.4 V	"	"		"		"	u	"		5.5 V	"	2A	££	tt.	"
			50	"	"	5.5 V	0.4 V	"		"		66	"	"		"	"	2B	"	"	"
			51	"	"	"	5.5 V	0.4 V		u		"	"	"		"	"	2C	"	"	
			52	"	"	"	"	5.5 V		"		0.4 V	"	"		"	"	3A	"	"	
			53 54	"			"	5.5 V 5.5 V				5.5 V 5.5 V	0.4 V 5.5 V	0.4 V			"	3B 3C		"	
	-	3005	54 55	GND	GND	GND	GND	GND		"		GND	GND	GND		GND	"	V _{CC}		6.6	mA
	I _{CCL}	3005	56	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V		"		5.5 V	5.5 V	5.5 V		5.5 V	"	V _{CC}		3.6	mA
2		sts, terminal							nd \/ +	ooto oro o	nittad	J.J V	J.J V	J.J V		J.J V		vcc .		5.0	
-																					
		sts, terminal o				roup 1, ex	cept I _C =	: -55° C, a	and V _{IC} to		mittea.				OUT	0.71/	501/	1 44 4 41/ 1			
9	t _{PHL}	3003	57	IN	2.7 V					GND "					OUT	2.7 V	5.0 V	1A to 1Y	2	30	ns "
Tc = 25°C		Fig. 3	58	2.7 V	IN					"					OUT	2.7 V		1B to 1Y	"	"	"
			59	2.7 V	2.7 V					"					OUT	IN	"	1C to 1Y	"		"
			60			IN	2.7 V	2.7 V	OUT	"							"	2A to 2Y	"	"	"
			61			2.7 V	IN	2.7 V	OUT								"	2B to 2Y		"	
			62			2.7 V	2.7 V	IN	OUT	"							"	2C to 2Y	"	"	
			63							"	OUT	IN	2.7 V	2.7 V			"	3A to 3Y	"	"	
			64							"	OUT	2.7 V	IN	2.7 V			íí.	3B to 3Y	tt.	er .	"
			65							"	OUT	2.7 V	2.7 V	IN			"	3C to 3Y	"	"	"
	t _{PLH}		66	IN	2.7 V					"					OUT	2.7 V	"	1A to 1Y	"	35	"
			67	2.7 V	IN					"					OUT	2.7 V	"	1B to 1Y	"	"	"
			68	2.7 V	2.7 V					"					OUT	IN	íí.	1C to 1Y	tt	"	"
			69			IN	2.7 V	2.7 V	OUT	"							"	2A to 2Y	**	"	"
			70			2.7 V	IN	2.7 V	OUT	"							"	2B to 2Y	"	"	"
			71			2.7 V	2.7 V	IN	OUT	"							"	2C to 2Y	"	"	"
			72							"	OUT	IN	2.7 V	2.7 V			"	3A to 3Y	66	"	"
			73							"	OUT	2.7 V	IN	2.7 V	_		"	3B to 3Y	66	er .	"
			74							"	OUT	2.7 V	2.7 V	IN			"	3C to 3Y	££	"	"
10	Same tes	sts, terminal	conditions a	nd limits a	s for suba	roup 9, ex	cept T _C =	125° C, t	_{PHL} = 45 n	ıs, maximı	ım and t _₽ ı	_{гн} = 50 ns	maximum	١.				•			
		sts, terminal o																			
· · ·	- 2	,	u	u																	

^{1/} For cases X and 2, pins not referenced are NC.

$\underline{2}$ / I_{IL} limits in μA are as follows:

Circuit	А	В	С	D	E	F
I _{IL}	-120/-360	-30/-300	-160/-400	-120/-360	-150/-380	-105/-345

TABLE III. Group A inspection for device type 03. Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.7 V or open)

			Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Cubaroup	Symbol	MIL-STD- 883	A,B,C,D Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Lin	nits	Unit
Subgroup	Symbol	method	2, X, <u>1</u> /	2	3	4	0	0	9	10	12	13	14	16	10	19	20	terminal	LIII	1115	Offic
			Test no.	1A	1B	NC	1C	1D	1Y	GND	2Y	2A	2B	NC	2C	2D	V_{CC}		Min	Max	
1	Voh	3006	1	2.0 V	2.0 V		2.0 V	2.0 V	-400 μA	GND		5.5 V	5.5 V		5.5 V	5.5 V	4.5 V	1Y	2.5		V dc
Tc = 25°C			2	5.5 V	5.5 V		5.5 V	5.5 V		"	-400 μA	2.0 V	2.0 V		2.0 V	2.0 V	"	2Y	2.5		££
	Vol	3007	3	0.7 V	5.5 V		"	"	4 mA	"		5.5 V	5.5 V		5.5 V	5.5 V	**	1Y		0.4	"
			4	5.5 V	0.7 V		"	66	"	"		"	ű		66	"	"	1Y		"	"
			5	"	5.5 V		0.7 V	66	"	"		"	"		66	"	"	1Y		"	"
			6	"	"		5.5 V	0.7 V	"	"		"	"		66	"	"	1Y		"	"
			7	"	"		"	5.5 V		"	4 mA	0.7 V	"		66	"	"	2Y		"	"
			8	"	"		"	**		"	"	5.5 V	0.7 V		66	"	"	2Y		"	"
			9	"	"		"	"		"	"	"	5.5 V		0.7 V	"	"	2Y		"	"
			10	"	"		"	"		"	"	"	5.5 V		5.5 V	0.7 V	"	2Y		"	"
	V _{IC}		11	-18 mA						"							"	1A		-1.5	"
			12		-18 mA					"							"	1B		"	"
			13				-18 mA			"							"	1C		"	"
			14					-18 mA		"							"	1D		"	"
			15							"		-18 mA					"	2A		"	"
			16							"			-18 mA				"	2B		"	"
			17							"					-18 mA		"	2C		"	"
			18							"						-18 mA	"	2D		"	"
	I _{IH1}	3010	19	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	μΑ
			20	GND	2.7 V		GND	GND		"		"	"		"	"	"	1B		"	"
			21	"	GND		2.7 V	GND		"		"	"		"	"	"	1C		"	"
			22	"	66		GND	2.7 V		"		"	"		"	"	"	1D		"	"
			23	"	66		"	GND		"		2.7 V	"		"	"	"	2A		"	"
			24	"	66		"	66		"		GND	2.7 V		"	"	"	2B		"	"
			25	"	66		"	66		"		"	GND		2.7 V	"	"	2C		"	"
			26	"	"		"	66		tt		"	"		GND	2.7 V	"	2D		"	"
	I_{1H2}		27	5.5 V	"		"	"		"		"	"		66	GND	"	1A		100	"
			28	GND	5.5 V		"	**		"		"	"		66	"	"	1B		"	"
			29	"	GND		5.5 V	**		"		"	"		66	"	"	1C		"	"
			30	"	"		GND	5.5 V		"		"	"		66	"	"	1D		"	"
			31	"	"		"	GND		"		5.5 V	"		66	"	"	2A		"	"
			32	"	"		"	"		"		GND	5.5 V		66	"	"	2B		"	"
			33	"	íí.		"	ee .		"		GND	GND		5.5 V	"	"	2C		"	"
			34	"	íí.		"	"		"		GND	GND		GND	5.5 V	"	2D		"	"
	IιL	3009	35	0.4 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	"	"	1A	<u>2</u> /	<u>2</u> /	"
			36	5.5 V	0.4 V		5.5 V	"		"		"	"		"	"	44	1B	"	"	"
			37	"	5.5 V		0.4 V	"		"		"	"		"	"	44	1C	"	"	"
			38	"	"		5.5 V	0.4 V		"		"	"		"	"	"	1D	"	"	"
			39	"	"		"	5.5 V		"		0.4 V	"		"	"	"	2A	"	"	"
			40	"	"		"	"		"		5.5 V	0.4 V		"	"	"	2B	"	"	"
			41	"	"		"	"		"		5.5 V	5.5 V		0.4 V	"	"	2C	"	"	"
			42	"	"		"	"		"		5.5 V	5.5 V		5.5 V	0.4 V	"	2D	"	"	"

MIL-M-38510/310D

See footnotes at end of device type 03.

TABLE III. <u>Group A inspection for device type 03 – Continued.</u> Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open)

					1 611	Tilliai CO	naitions	(Pillis filot	uesigna	ileu illay	be mgm	2 2.0 V C		<i>).1</i> V OI V	эрсп)						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases 2, X, 1/	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	1A	1B	NC	1C	1D	1Y	GND	2Y	2A	2B	NC	2C	2D	V _{CC}		Min	Max	
1	l _{os}	3011	43	5.5 V	5.5 V		5.5 V	5.5 V	GND	GND							5.5 V	1Y	-15	-110	mA
Tc = 25°C			44							"	GND	5.5 V	5.5 V		5.5 V	5.5 V	"	2Y	-15	-110	tt.
	Іссн	3005	45	5.5 V	5.5 V		5.5 V	5.5 V		íí.		5.5 V	5.5 V		5.5 V	5.5 V	44	Vcc		2.4	"
	I _{CCL}	3005	46	GND	GND		GND	GND		"		GND	GND		GND	GND	"	V _{cc}		4.4	"
2	Same tes	sts, terminal o	conditions a	nd limits as	s for subg	roup 1, ex	cept T _C =	125° C, a	nd V _{IC} te	ests are or	nitted.										
3	Same tes	sts, terminal o	conditions a	nd limits as	s for subg	roup 1, ex	cept T _C =	-55° C, a	ind V _{IC} te	ests are or	mitted.										
9	t _{PHL}	3003	47	IN	2.7 V		2.7 V	2.7 V	OUT	GND							5.0 V	1A to 1Y	2	20	ns
Tc = 25°C		Fig. 3	48	2.7 V	IN		2.7 V	2.7 V	OUT	66							"	1B to 1Y	er.	íí	ee
		_	49	2.7 V	2.7 V		IN	2.7 V	OUT	"							"	1C to 1Y	"	"	"
			50	2.7 V	2.7 V		2.7 V	IN	OUT	"							"	1D to 1Y	"	"	"
			51							"	OUT	IN	2.7 V		2.7 V	2.7 V	"	2A to 2Y	"	íí	er.
			52							"	OUT	2.7 V	IN		2.7 V	2.7 V	"	2B to 2Y	"	íí	"
			53							u	OUT	2.7 V	2.7 V		IN	2.7 V	"	2C to 2Y	"	"	"
			54							"	OUT	2.7 V	2.7 V		2.7 V	IN	"	2D to 2Y	"	"	"
	t _{PLH}		55	IN	2.7 V		2.7 V	2.7 V	OUT	"							"	1A to 1Y	"	15	"
	-1 2.11		56	2.7 V	IN		2.7 V	2.7 V	OUT	í,							"	1B to 1Y	"	"	"
			57	2.7 V	2.7 V		IN	2.7 V	OUT	"							"	1C to 1Y	"	"	"
			58	2.7 V	2.7 V		2.7 V	IN	OUT	"							"	1D to 1Y	"	"	"
			59							"	OUT	IN	2.7 V		2.7 V	2.7 V	"	2A to 2Y	"	"	"
			60							"	OUT	2.7 V	IN		2.7 V	2.7 V	"	2B to 2Y	"	"	"
			61							"	OUT	2.7 V	2.7 V		IN	2.7 V	"	2C to 2Y	"	íí	"
			62							"	OUT	2.7 V	2.7 V		2.7 V	IN	"	2D to 2Y	"	"	"
10	Same too	sts, terminal o		nd limite or	o for cuba	roup 0 av	cont T. –	125° € +	- 20 5	c and t		Z.7 V	Z.7 V		2.7 V	1 111	1	20 (0 21		1 1	
									PHL = 30 11	is, and tell	1 = 23 115.										
	same tes	sts, terminal o	conditions ai	nu iimits as	s ior subgi	roup 10, e	except 1 _C	= -55° C.													

^{1/} For cases X and 2, pins not referenced are NC.

$\underline{2}$ / I_{IL} limits in μA are as follows:

Circuit	А	В	С	D	Е	F
٦	-120/-360	-30/-300	-160/-400	-120/-360	-150/-380	-105/-345

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.7 V or open)

														0.7 V or c		40	- 4.4				
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases 2, X, <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	V_{CC}		Min	Max	
1	Vон	3006	1	2.0 V	2.0 V	-400 μA	5.5 V	5.5 V		GND		5.5 V	5.5 V		5.5 V	5.5 V	4.5 V	1Y	2.5		V dc
Tc = 25°C			2	5.5 V	5.5 V		2.0 V	2.0 V	-400 μA	"		5.5 V	5.5 V		66	"	"	2Y	"		íí.
			3	"	"		5.5 V	5.5 V		"	-400 μΑ	2.0 V	2.0 V		"	"	"	3Y	"		"
			4	"	"		"	"		"		5.5 V	5.5 V	-400 μΑ	2.0 V	2.0 V	"	4Y	"		íí.
	Vol	3007	5	0.7 V	5.5 V	4 mA	66	"		"		5.5 V	5.5 V	.σο μ. τ	5.5 V	5.5 V	"	1Y		0.4	"
	•01	000.	6	5.5 V	0.7 V	4 mA	66	"		"		"	"		"	"	"	1Y		"	"
			7	"	5.5 V		0.7 V	"	4 mA	"		"	u		"	"	"	2Y		u	"
			8	"	"		5.5 V	0.7 V	4 mA	"		"	u		"	"	"	2Y		u	"
			9	"	"		"	5.5 V	1111/1	"	4 mA	0.7 V	u		"	"	"	3Y		u	"
			10	"	"		66	"		"	4 mA	5.5 V	0.7 V		"	"	"	3Y		u	"
			11	"	"		"	"		"	111171	"	5.5 V	4 mA	0.7 V	"	"	4Y		"	"
			12	"	"		"	"		"		"	5.5 V	4 mA	5.5 V	0.7 V	"	4Y		"	"
	V _I C		13	-18 mA						"			0.0 V	7111/1	0.0 V	0.7 V	"	1A		-1.5	"
	VIC		14	10 1117	-18 mA					"							"	1B		"	"
			15		10 1117 (-18 mA			"							"	2A		"	"
			16				10 1117	-18 mA		"							"	2B		"	"
			17					10 111/1		"		-18 mA					"	3A		"	"
			18							££		-101117	-18 mA				"	3B		tt.	tt
			19							"			10 111/1		-18 mA		"	4A		"	"
			20							"					10 11171	-18 mA	"	4B		"	"
	I _{IH1}	3010	21	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	μА
	1 H 1	3010	22	GND	2.7 V		GND	GND		"		"	ű.		"	"	0.0 V	1B		"	μΑ
			23	"	GND		2.7 V	GND		"		"	"		66	"	"	2A		"	"
			24	"	"		GND	2.7 V		"		"	"		66	"	"	2B		ıı.	"
			25	"	"		GIVD "	GND		"		2.7 V	"		"	"	"	3A		"	"
			26	"	"		"	"		"		GND	2.7 V		"	"	"	3B		"	"
			27	"	"		44	44		"		"	GND		2.7 V	"	"	4A		ıı.	"
			28	"	"		44	44		"		"	"		GND	2.7 V	"	4B		ıı.	"
	I _{I H 2}		29	5.5 V	"		"	44		"		"	"		"	GND	"	1A		100	"
	11 H 2		30	GND	5.5 V		66	"		"		"	"		66	"	"	1B		"	"
			31	"	GND		5.5 V	"		"		"	"		66	"	"	2A		"	"
			32	"	"		GND	5.5 V		"		"	"		66	"	"	2B		"	"
			33	"	"		"	GND		"		5.5 V	"		66	"	"	3A		"	"
			34	"	"		44	"		"		GND	5.5 V		66	"	"	3B		ıı.	"
			35	"	"		44			"		GND	GND		5.5 V	"	"	4A		ıı.	"
			36	"	"		"	"		"		GND	GND		GND	5.5 V	"	4B		"	"
	IIL	3009	37	0.4 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	"	"	1A	2/	2/	"
	ЧL	5505	38	5.5 V	0.4 V		5.5 V	" "	-	"		" "	" "		" "	"	"	1B	<u>~</u> /	<u>~</u> /	"
			39	" "	5.5 V		0.4 V	"	-	"		"	íí.		66	"	"	2A	"	"	"
			40	"	3.3 V		5.5 V	0.4 V		"		"	ıı		66	"	"	2B	"	"	"
			41	"	"		3.3 V	5.5 V	-	u		0.4 V	ıı		66	"	"	3A	"	"	"
			42	"	"		66	3.3 V		u		5.5 V	0.4 V		66	"	"	3B	"	"	"
			43	"	"		"	"		"		5.5 V	5.5 V	1	0.4 V	"	"	4A	"	"	"
			43	"	"		"	"	1	"	1	5.5 V	5.5 V		5.5 V	0.4 V	"	4A 4B	"	"	"
			44	l	<u> </u>	L		L	<u> </u>	L	l	υ.υ v	ა.ა v		ა.ა v	U.4 V		4D			

See footnotes at end of device type 04

15

TABLE III. Group A inspection for device type 04 – Continued.

Subgroup Symbol MIL-STD- AB.C.D
Subgroup Symbol 883
Method Column Test no. 1A 1B 1Y 2A 2B 2Y GND 3Y 3A 3B 4Y 4A 4B V _{CC} Min Max Min Min Min Max Min
Test no.
1
TC = 25°C 46
47
1
C_CH 3005 49 5.5 V 6.0
2 Same tests, terminal conditions and limits as for subgroup 1, except T _C = 125° C, and V _{1C} tests are omitted. 3 Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. 3 Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. 9 T _C = 25° C
2 Same tests, terminal conditions and limits as for subgroup 1, except T _C = 125° C, and V _{1C} tests are omitted. 3 Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. 9 T _C = 25° C Fig. 3 Fig. 4
3 Same tests, terminal conditions and limits as for subgroup 1, except T _C = -55° C, and V _{1C} tests are omitted. 9 T _C = 25° C T _C = 25°
9
Tc = 25°C Fig. 3 Fig. 4 Fig. 3 Fig. 3 Fig. 4 Fig. 3 Fig. 3 Fig. 4 Fig. 3 Fig. 4 Fig. 3 Fig. 4 Fig. 4 Fig. 4 Fig. 3 Fig. 4 Fig
53
1
Total Tota
SS ST ST ST ST ST ST ST
Total Tota
t _{PLH} t _{PLH} t _{OUT} in the second of the se
t _{PLH} t _{PLH} 58 IN 2.7 V OUT "
60 2.7 V IN OUT " 15 " 18 to 1Y " " " " 18 to 1Y " " " " " 24 to 2Y " <t< td=""></t<>
60 2.7 V IN OUT " 18 to 17 " " 2A to 27 " " " "
61 IN 2.7 V OUT " ZA to 2Y " " ZA to 2Y " " "
62 2.7 V IN OUT " " 2B to 2Y " " "
63 " OUT IN 2.7 V " 3A to 3Y " " "
64 " OUT 2.7 V IN " 3B to 3Y " " "
65 " OUT IN 2.7 V " 4A to 4Y " " "
66 UT 2.7 V IN " 4B to 4Y " " "
Same tests, terminal conditions and limits as for subgroup 9, except T _C = 125° C, t _{PHL} = 30 ns, and t _{PLH} = 25 ns.
11 Same tests, terminal conditions and limits as for subgroup 10, except T _C = -55° C.

^{1/} For cases X and 2, pins not referenced are NC.

$\underline{2}$ / I_{IL} limits in μA are as follows:

Circuit	Α	В	С	D	Е	F
I _{IL}	-120/-360	-30/-300	-150/-380	-160/-400	-150/-380	-105/-345

TABLE III. Group A inspection for device type 05. Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.7 V or open)

												≥ 2.0 V C									
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases 2, X, <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lim	iits	Unit
			Test no.	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	V _{cc}	1	Min	Max	
1	Vol	3007	1	0.7 V	5.5 V	4 mA	5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	4.5 V	1Y		0.4	V dc
Tc = 25°C			2	5.5 V	0.7 V	4 mA	5.5 V	5.5 V		**		"	"		66	"	**	1Y		**	"
			3	"	5.5 V		0.7 V	5.5 V	4 mA	"		"	"		"	"	"	2Y		"	"
			4	"	"		5.5 V	0.7 V	4 mA	"		"	"		"	"	"	2Y		"	"
			5	"	"		"	5.5 V		"	4 mA	0.7 V	"		"	"	"	3Y		"	"
			6	"	"		"	"		íí.	4 mA	5.5 V	0.7 V		"	"	u	3Y		íí.	"
			7	"	"		"	66		"		66	5.5 V	4 mA	0.7 V	"	"	4Y		"	íí
			8	"	"		"	66		"		66	"	4 mA	5.5 V	0.7 V	"	4Y		"	íí.
	I _{CEX}		9	2.0 V	"	5.5 V	"	"		"		66	"		"	5.5 V	"	1Y		100	μΑ
			10	5.5 V	2.0 V	5.5 V	íí.	££		66		tt.	"		"	"	66	1Y		ii.	"
			11	"	5.5 V		2.0 V	66	5.5 V	"		"	"		"	"	"	2Y		"	"
			12	"	"		5.5 V	2.0 V	5.5 V	"		"	"		"	"	"	2Y		"	
			13	"	"		"	5.5 V		"	5.5 V	2.0 V	"		"	"	"	3Y		"	"
			14	"	"		"	"		"	5.5 V	5.5 V	2.0 V		"	"	"	3Y		"	"
			15	"	"		"	"		"		5.5 V	5.5 V	5.5 V	2.0 V	"	"	4Y		"	"
			16	"	"		"	"		"		5.5 V	5.5 V	5.5 V	5.5 V	2.0 V	"	4Y		"	"
	Vic		17	-18 mA						"							"	1A		-1.5	V dc
			18		-18 mA					"							"	1B		"	"
			19				-18 mA			íí.							"	2A		tt.	"
			20					-18 mA		"							"	2B		"	"
			21							"		-18 mA					"	3A		"	"
			22							"			-18 mA				"	3B		"	"
			23							"					-18 mA		"	4A		"	"
			24							"						-18 mA	"	4B		"	íí.
	I _{I H 1}	3010	25	2.7 V	GND		GND	GND		"		GND	GND		GND	GND	5.5 V	1A		20	μΑ
			26	GND	2.7 V		GND	GND		"		íí.	"		"	"	"	1B		"	íí.
			27	"	GND		2.7 V	GND		"		"	"		"	"	"	2A		"	"
			28	"	"		GND	2.7 V		"		"	"		"	"	"	2B		"	"
			29	"	"		"	GND		"		2.7 V	"		"	"	"	3A		íí.	"
			30	"	"		"	"		"		GND	2.7 V		"	"	"	3B		"	"
			31	"	"		"	"		"		"	GND		2.7 V	"	"	4A		"	"
			32	"	"		"	"		"		"	"		GND	2.7 V	"	4B		"	"
	I_{1H2}		33	5.5 V	"		"	"		"		"	"		"	GND	"	1A		100	"
			34	GND	5.5 V		"	"		ű		"	"		"	"	ű	1B		"	"
			35	"	GND		5.5 V	"		"		"	"		"	"	"	2A		"	"
			36		"		GND	5.5 V		"			"		"		"	2B			
			37	"	"		"	GND		ű		5.5 V	"		"	"	"	3A		"	"
			38	"	"		"	"		"		GND	5.5 V			"	"	3B		"	"
			39	"	"		"	"		"		GND	GND		5.5 V		"	4A		"	"
ı			40	"	"							GND	GND		GND	5.5 V		4B			

See footnotes at end of device type 05.

TABLE III. <u>Group A inspection for device type 05 – Continued.</u> Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$ or low $\le 0.7 \text{ V}$ or open)

					1 61	minai co	HUILIONS	(bille lio	uesigna	ileu may	be nign	≥ 2.0 V (J.7 V OI (ppen)						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14			ļ	
Subgroup	Symbol	883	Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Lim	nits	Unit
3 ,	-,	method	2, X, 1/				_		-			-			_		-	terminal			
			Test no.	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	V _{CC}	i	Min	Max	
1	I _{I L}	3009	41	0.4 V	5.5 V		5.5 V	5.5 V		GND		5.5 V	5.5 V		5.5 V	5.5 V	4.5 V	1A	2/	2/	"
Tc = 25°C			42	5.5 V	0.4 V		5.5 V	5.5 V		"		"	"		"	"	"	1B	"	"	"
			43	"	5.5 V		0.4 V	5.5 V		"		"	"		"	"	"	2A	"	"	"
			44	"	"		5.5 V	0.4 V		"		££	"		"	££	"	2B	"	tt.	"
			45	"	"		"	5.5 V		"		0.4 V	"		"	"	"	3A	"	"	"
			46	"	"		"	"		"		5.5 V	0.4 V		"	"	"	3B	"	"	"
			47	"	"		"	"		"		66	5.5 V		0.4 V	"	"	4A	"	"	"
			48	"	"		"	"		"		"	"		5.5 V	0.4 V	"	4B	"	"	"
	lссн	3005	49	5.5 V	5.5 V		5.5 V	5.5 V		"		5.5 V	5.5 V		5.5 V	5.5 V	"	Vcc		4.8	mA
	Iccl	3005	50	GND	GND		GND	GND		"		GND	GND		GND	GND	"	Vcc		8.8	mA
2	Same tes	sts, terminal o	conditions a	nd limits a	s for subg	roup 1, ex	cept T _C =	125° C, a	and V _{IC} to	ests are o	mitted.										
3	Same tes	sts, terminal o	conditions a	nd limits a	s for subg	roup 1, ex	cept T _C =	-55° C, a	and V _{IC} to	ests are o	mitted.										
9	t _{PHL}	3003	51	IN	2.7 V	OUT				GND							5.0 V	1A to 1Y	2	30	ns
Tc = 25°C		Fig. 3	52	2.7 V	IN	OUT				"							"	1B to 1Y	"	"	"
			53				IN	2.7 V	OUT	"							"	2A to 2Y	"	"	"
			54				2.7 V	IN	OUT	"							"	2B to 2Y	"	"	"
			55							"	OUT	IN	2.7 V				"	3A to 3Y	"	"	"
			56							"	OUT	2.7 V	IN				"	3B to 3Y	"	"	"
			57							"				OUT	IN	2.7 V	"	4A to 4Y	íí.	"	"
			58							"				OUT	2.7 V	IN	"	4B to 4Y	**	"	"
	t _{PLH}		59	IN	2.7 V	OUT				"							"	1A to 1Y	66	35	"
	401		60	2.7 V	IN	OUT				"							"	1B to 1Y	tt.	"	"
			61				IN	2.7 V	OUT	"							"	2A to 2Y	íí.	"	"
			62				2.7 V	IN	OUT	"							"	2B to 2Y	"	"	"
			63							"	OUT	IN	2.7 V				"	3A to 3Y	"	"	"
			64							"	OUT	2.7 V	IN				"	3B to 3Y	tt.	"	"
			65							"		Z., V		OUT	IN	2.7 V	"	4A to 4Y	"	"	"
			66							"		 		OUT	2.7 V	IN	"	4B to 4Y	"	"	"
10	Cama t-	ata tamain -l		مطائحة -	a for out =	#a.us 0 -:	(cont T	10E0 C ±	45 :-	o and t	F0 ==	L	<u> </u>	001	Z.1 V	IIV	1	70 (0 7)			
		sts, terminal o								is, and t _{PLI}	₁ = 50 ns.										
11	Same tes	sts, terminal o	conditions a	nd limits a	s tor subg	roup 10, e	except T _C	= -55° C.													

^{1/} For cases X and 2, pins not referenced are NC.

$\underline{2}$ / I_{IL} limits in μA are as follows:

Circuit	А	В	С	D	Е	F
I _{IL}		-30/-300			-150/-380	-105/-345

5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number and date of specification.
 - b. Issue of DODISS to be cited in the solicitation, and if required, the specific issue of individual documents referenced (2.1).
 - c. Packaging requirements (see 5.1).
 - d. Complete part number (see 1.2).
 - e. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - f. Requirements for certificate of compliance, if applicable.
 - g. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - h. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - i. Requirements for product assurance options.
 - j. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - k. Requirements for "JAN" marking.
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43216-5000.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IC}	Input clamp voltage
V _{IN}	Voltage level at an input terminal

6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish C (see 3.3). Longer length leads and lead forming shall not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-M-38510 or MIL-PRF-38535.

Military device	Generic-industry		
type	type		
01	54LS11		
02	54LS15		
03	54LS21		
04	54LS08		
05	54LS09		

6.8 <u>Manufacturers' designation.</u> Manufacturers' included in this specification are designated as shown in table IV herein.

TABLE IV. Substitutability and manufacturers' designation.

	Manufacturer						
Device	Circuit A	Circuit B	Circuit C	Circuit D	Circuit E	Circuit F	
type	Texas Instru-	Signetics	National	Raytheon	Motorola	Fairchild	
	ments Inc.	Corporation	Semiconductor	Company	Inc	Semiconductor	
			Corp				
01	X	X	X	Χ	Χ	Χ	
02	X	X	X	X	Χ	X	
03	X	X	Χ	X	Х	X	
04	X	X	Χ	X	Х	X	
05		X	_		Х	X	

6.9 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians: Preparing activity: Army - CR DLA - CC

Navy - EC
Air Force - 11 (Project 5962-1931)

DLA - CC

Review activities:

Army - HD, MI, SM Navy - AS, CG, MC, SH, TD

Air Force - 03, 19

DOCUMENT IMPROVEMENT PRO	

INSTRUCTIONS

- 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.
- 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

Ċ	contractual requirements.						
I	RECOMMEND A CHANGE:	1. DOCUMENT NUMBE MIL-M-38510/310I	000	NT DATE (YYYYMMDD) 02-10-03			
3.	DOCUMENT TITLE		I				
	ELECTRONIC COMPONENT CASE OUTLINES						
4.	NATURE OF CHANGE (Identify paragraph			sheets as needed.)			
5.	REASON FOR RECOMMENDATION						
6	SUBMITTER						
	NAME (Last, First Middle Initial)	b. O	RGANIZATION				
C.	ADDRESS (Include Zip Code)	(1) C (2) E	ELEPHONE (Include Area Code) Commercial DSN If applicable)	7. DATE SUBMITTED (YYYYMMDD)			
	PREPARING ACTIVITY						
	NAME Defense Supply Center, Columbus		ELEPHONE (Include Area Code Commercial 614-692-0535	(2) DSN 850-0535			
	ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	De 87 Fo	DU DO NOT RECEIVE A REPLY W efense Standardization Program Off 25 John J. Kingman Road, Suite 25 ort Belvoir, Virginia 22060-6221 elephone (703)767-6888 DSN 427	ice (DLSC-LM) 33			