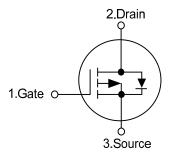


UTT15P06

Preliminary

15A, 60V **P-CHANNEL POWER MOSFET**

DESCRIPTION


The UTC UTT15P06 is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed, cost-effectiveness and minimum on-state resistance. It can also withstand high energy in the avalanche.

FEATURES

* $R_{DS(ON)}$ =90m Ω V_{GS}=-10V, I_D=-15A

* High Switching Speed

Power MOSFET TO-220 TO-251 TO-252

ORDERING INFORMATION

Ordering Number		Deekere	Pin Assignment			De alvie e	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT15P06L-TA3-T	UTT15P06G-TA3-T	TO-220	G	D	S	Tube	
UTT15P06L-TM3-T	UTT15P06G-TM3-T	TO-251	G	D	S	Tube	
UTT15P06L-TN3-T	UTT15P06G-TN3-T	TO-252	G	D	S	Tube	
UTT15P06L-TN3-R	UTT15P06G-TN3-R	TO-252	G	D	S	Tape Reel	
UTT15P06L-TN3-R UTT15P06G-TN3-R TO-252 G D S Tape I						Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

UTT15P06L-TA3-T	(1) T: Tube, R: Tape Reel				
(2)Package Type	(2) TA3: TO-220, TM3: TO-251, TN3: TO-252				
(3)Lead Free	(3) L: Lead Free, G: Halogen Free				

■ ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	-60	V
Gate-Source Voltage	V _{GSS}		±25	V
Drain Current	Continuous	I _D	-15	А
	Pulsed	I _{DM}	-45	А
D D' ' ''	TO-220		40	10/
Power Dissipation	TO-251/TO-252	P _D	31.3	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient (Stea	nction to Ambient (Steady state)		62	°C/W	
Junction to Case	TO-220	0	3.125	°C/W	
	TO-251/TO-252	θ _{JC}	4		

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =-250μΑ, V _{GS} =0V	-60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-60V, V _{GS} =0V			-1	μA
Cata Source Lookage Current	rd		V _{GS} =+25V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current Revers	se	I _{GSS}	V _{GS} =-25V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						-	
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =-250µA	-1		-3	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =-10V, I _D =-15A (Note 1)			90	mΩ
DYNAMIC PARAMETERS (Note 2)							
Input Capacitance		CISS	(-0)(-)(0)(-)(0)(1100	2660	рF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =-25V, f=1.0MHz (Note 2)		115		рF
Reverse Transfer Capacitance		C _{RSS}	(1010 2)		90		рF
SWITCHING PARAMETERS							
Total Gate Charge		Q_{G}	1/1 - 10/1/1 - 20/1		14	27	nC
Gate to Source Charge		Q_{GS}			3		nC
Gate to Drain Charge		Q_{GD}	I _D =-15A (Note 3) 8			nC	
Turn-ON Delay Time		t _{D(ON)}	16		16		ns
Rise Time		t _R	V _{DD} =-30V, I _D =-1A, R _G =12.5Ω		30		ns
Turn-OFF Delay Time		t _{D(OFF)}	(Note 3)		50		ns
Fall-Time		t _F			20		ns
SOURCE- DRAIN DIODE RATINGS AN	ND CH	ARACTER	ISTICS (T _C =25°C) (Note 2)				
Maximum Body-Diode Continuous Current		ls				-15	А
Maximum Body-Diode Pulsed Current		I _{SM}				-45	Α
Drain-Source Diode Forward Voltage		V_{SD}	I _F =-15A, V _{GS} =0V (Note 1)		-1.0	-1.5	V

Notes: 1. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

2. Guaranteed by design, not subject to production testing.

3. Independent of operating temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

