S-BAND PARTIALLY MATCHED POWER GaAs MESFET

NES2527B-30

FEATURES

• HIGH OUTPUT POWER: 30 W

NEC

- LOW DISTORTION: -45 dBc IM3 at 33 dBm SCL (Verified by a Wafer Qual Test)
- HIGH LINEAR GAIN: 13.0 dB
- EFFICIENT LINEAR OPERATION: 6 A IDSQ
- WIDEBAND OPERATION: RF measurements at both 2.5 & 2.7 GHz

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE T-79

DESCRIPTION

The NES2527B-30 is a 30 W GaAs MESFET with an internal matching network designed for High Power transmitter applications for MMDS systems. Its primary band is 2.5 to 2.7 GHz, but with different external matching, 200 MHz of instantaneous bandwidth can be achieved anywhere from 2.1 to 2.7 GHz. The internal matching network provides partial matching, and an external circuit completes the match to 50 Ω . The device contains two chips which employ 0.9 μ m Tungsten Silicide gates, via holes, plated heat sink, and silicon dioxide passivation for superior performance, thermal characteristics, and reliability. This part is designed to be mass produced for low cost commercial applications.

NES2527B-30 PART NUMBER PACKAGE OUTLINE T-79 SYMBOLS **CHARACTERISTICS** UNITS MIN **TEST CONDITIONS** TYP MAX Power Out at 1 dB Gain Compression dBm VDS = 10 V P1dB 44.0 45.0 Functional Characteristics GL f = 2.5 & 2.7 GHz Linear Gain dB 11.5 13.0 Power-Added Efficiency @ 1 dB Gain Compression % 40 IDSQ = 6.0 A η_{ADD} Drain Source Current at 1 dB Gain Compression 7.4 $R_G = 10 \Omega^2$ **D**SRF А ΙМз 3rd Order Intermodulation Distortion¹ dBc -45 -40^{1} POUT = 33 dBm/Tone Electrical DC Characteristics Saturated Drain Current VDS = 2.5 V; VGS = 0 V IDSS А 15 V Vр Pinch-off Voltage -4.0 -2.6 VDS = 2.5 V; IDS = 84 mA Transconductance mS 8 VDS = 2.5 V; IDS = 84 mA gm Rтн Thermal Resistance. Channel to Case K/W 1.3 TCASE = 25 °C. 10 V. 6.0 A 1.5

ELECTRICAL PERFORMANCE (TCASE = 40 °C)

Notes:

1. IM₃ is measured with a two-tone test as part of Wafer Qualification Tests on a sample basis.

Test criteria are set to ensure a maximum IM₃ of -40 dBc with a confidence factor of 90%.

2. Rg is the series resistance between the gate supply and the FET gate.

ABSOLUTE MAXIMUM RATINGS¹

(TCASE = $25 \degree C$ unless otherwise noted)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vdso	Drain to Source Voltage	V	15
Vgdo	Gate to Drain Voltage	V	-18
Vgs	Gate to Source Voltage	V	-7
lds	Drain Current	A	27
lgs	Gate Current	mA	180
Рт	Total Power Dissipation	W	100
Тсн	Channel Temperature	°C	175
Tstg	Storage Temperature	°C	-65 to +175

Note:

1. Operation in excess of any one of these parameters may result in permanent damage.

RECOMMENDED OPERATING LIMITS

(Recommended operating conditions for reliable operation, i.e. > 10^{6} hrs MTTF)

SYMBOLS	PARAMETERS	UNITS	MIN	ТҮР	МАХ
Vds	Drain to Source Voltage	V		10.0	10.0
TFLANGE ¹	Flange Temperature	°C			62
GCOMP	Gain Compression	dB			3.0
Rg ²	Gate Resistance	Ω	5	10	15
IDSQ	Drain Current (RF OFF)	A			6.0

Notes:

 Calculation of maximum flange temperature is based on worst case conditions, that is, maximum RTH @ 62°C flange (1.66) and maximum power dissipation with no RF output. Operation at higher flange temperature may result in a lower MTTF.

2. Rg is the series resistance between the gate supply and the FET gate.

TYPICAL PERFORMANCE CURVES (Tc = 40°C)

TYPICAL BROAD BAND PERFORMANCE (TESTED IN 2.5 - 2.7 GHz FIXTURE)

SOURCE & LOAD LARGE SIGNAL IMPEDANCES

f (GHz)	Z SOURCE (Ω)	Z LOAD (Ω)	
2.1	55 - j18	14 - j24	
2.2	22 + j13	17 - j26	
2.3	13 + j4.0	21.5 - j26.5	
2.4	8 - j3.0	31 - j27	
2.5	7 - j8.0	32 - j23	
2.6	9 - j11	34 - j15	
2.7	13 - j14	29 - j10	
2.8	16 - j20	23 - j1.4	

BROADBAND TEST CIRCUIT, 2.5 - 2.7 GHz

(Artwork available from CEL engineering)

EXCLUSIVE NORTH AMERICAN AGENT FOR **NEC** RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279 24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM

DATA SUBJECT TO CHANGE WITHOUT NOTICE

