
Technical Data _____ CD54/74AC240/241/244 CD54/74ACT240/241/244

Advance Information

Octal Buffer/Line Drivers, 3-State

CD54/74AC/ACT240 - Inverting

CD54/74AC/ACT241 - Non-Inverting CD54/74AC/ACT244 - Non-Inverting

3.6 ns @ $V_{CC} = 5 V$, $T_A = 25^{\circ} C$, $C_L = 50 pF$

Type Features:

Buffered inputs

Typical propagation delay:

FUNCTIONAL DIAGRAM & TERMINAL ASSIGNMENT

The RCA CD54/74AC240, CD54/74AC241, and CD54/74AC244 and the CD54/74ACT240, CD54/74ACT241, and CD54/74ACT244 3-state octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/ACT240 and CD54/74AC/ACT244 have active-LOW output enables ($\overline{10E}$, $\overline{20E}$). The CD54/74AC/ACT241 has one active-LOW ($\overline{10E}$) and one active-HIGH (20E) output enable.

The CD74AC240 and CD74ACT240 are supplied in 20-lead dual-in-line plastic packages (E suffix) and 20-lead small-outline packages (M and M96 suffixes). The CD74AC241 is supplied in 20-lead dual-in-line plastic packages (E suffix) and the CD74ACT241 is supplied in 20-lead dual-in-line plastic packages (E suffix) and 20-lead small-outline packages (M96 suffix). The CD74AC244 and CD74ACT244 are supplied in 20-lead dual-in-line plastic packages (E suffix), 20-lead small-outline packages (M and M96 suffixes), and 20-lead shrink small-outline packages (SM96 suffix). These package types are operable over the following temperature ranges: Commerical (0 to 70° C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to + 125°C).

The CD54AC240 and CD54AC244 and the CD54ACT240, CD54ACT241, and CD54ACT244 are supplied in 20-lead hermetic dual-in-line ceramic packages (F3A suffix) and are operable over the -55 to $+125^{\circ}$ C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latch-up-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
 - ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TRUTH TABLES

INPU	OUTPUT	
10E, 20E	10E, 20E A	
L	L	н
L	н	L
н	x	Z

(AC/ACT240)

INP	UTS	OUTPUT	INP	UTS	OUTPUT
10E	1A	1Y	20E	2A	2Y
L	L	L	L	х	Z
L	н	н	н	L	L
н	х	Z	н	н	н

(AC/ACT241)

INPU	OUTPUT	
10E, 20E	0E, 20E A	
L	• L	L
L	Н	н
н	х	Z

(AC/ACT244)

H = HIGH Voltage Level

- L = LOW Voltage Level
- X = Immaterial
- Z = HIGH Impedance

This data sheet is applicable to the CD54/74AC240, CD54ACT240, and CD54/74ACT241. The CD54/74AC241 were not acquired from Harris Semiconductor. See SCHS244 for information on the CD74ACT240, CD74AC244, and CD74ACT244. Copyright © 2004, Texas Instruments Incorporated

Technical, Data

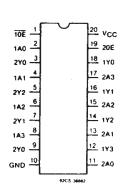
CD54/74AC240/241/244 CD54/74ACT240/241/244

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (V _{cc})	-0.5 to 6 V
DC INPUT DIODE CURRENT, I_{ik} (for $V_i < -0.5 V$ or $V_i > V_{cc} + 0.5 V$)	+20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_0 < -0.5$ V or $V_0 > V_{cc} + 0.5$ V)	+50 mA
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I _o (for V _o $>$ -0.5 V or V _o $<$ 1	Vcc + 0.5 V) ±50 mA
DC V _{∞} or GROUND CURRENT (I_{cc} or I_{GND})	±100 mA*
POWER DISSIPATION PER PACKAGE (Po):	
For T _A = -40 to +85°C (Package Type E)	
For T _A = -40 to +70°C (Package Type M)	
For T _A = +70 to +85°C (Package Type M)	
$FOI I A = +70 10 +05 C (Fackage Type W) \dots $	Derate Linearly at 6 mW/°C to 310 mW
OPERATING-TEMPERATURE RANGE (T _A): CD54	55 to +125°C
	55 to +125°C
OPERATING-TEMPERATURE RANGE (T _A): CD54 CD74	55 to +125°C 40 to +85°C
OPERATING-TEMPERATURE RANGE (T _A): CD54	55 to +125°C 40 to +85°C
OPERATING-TEMPERATURE RANGE (T _A): CD54 CD74 STORAGE TEMPERATURE (T _{stg})	
OPERATING-TEMPERATURE RANGE (T _A): CD54 CD74 STORAGE TEMPERATURE (T _{stg}) LEAD TEMPERATURE (DURING SOLDERING):	55 to +125°C 40 to +85°C 65 to +150°C +265°C

* For up to 4 outputs per device: add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN			
CHARACTERISTIC		MIN.	MAX.	UNITS
Supply-Voltage Range, V _{CC} *:				
(For T _A = Full Package-Temperature Range)				
AC Types		1.5	5.5	v
ACT Types		4.5	5.5	v
DC Input or Output Voltage, VI, Vo		0	VCC	V
Operating Temperature, T _A	CD54	-55	+125	°C
	CD74	-40	+85	C
Input Rise and Fall Slew Rate, dt/dv				
at 1.5 V to 3 V (AC Types)		0	50	ns/V
at 3.6 v to 5.5 V (AC Types)		0	20	ns/V
at 4.5 V to 5.5 V (ACT Types)		0	10	ns/V

* Unless otherwise specified, all voltages are referenced to ground.

VCS 3407 CD54/74AC, ACT240 TYPES TERMINAL ASSIGNMENT

20 VCC TOE 19 20E 2 1A0 240 -3 18 110 17 2A3 4 1A1 16 111 5 2Y2 15 2A2 6 1A2 7 14 1Y2 2¥1 1A3 8 13 2A1 240 -9 12 173 11 2A0 GND 10 92C5-36863

CD54/74AC, ACT241 TYPES TERMINAL ASSIGNMENT

CD54/74AC, ACT244 TYPES TERMINAL ASSIGNMENT

9

ار مراجع می مشکوم می این Technical Data CD54/74AC240/241/244 CD54/74ACT240/241/244

STATIC ELECTRICAL CHARACTERISTICS: AC Series

· · · · · · · · · · · · · · · · · · ·						AMBIEN	T TEMPE	RATURE	E (T _A) - ° (C ¹	
CHARACTERISTICS		TEST CONDITIONS		V _{cc} (V)	+	+25		o +85	-55 to +125		UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	-	1.2	—	1.2	-	
Voltage	Ун			3	2.1		2.1	—.	2.1		V.
				5.5	3.85	—	3.85		3.85		
Low-Level Input				1.5	_	0.3	_	0.3		0.3	
Voltage	VIL			3		0.9		0.9	<u> </u>	0.9) v
				5.5	_	1.65	-	1.65	-	1.65	
High-Level Output			-0.05	1.5	1.4	_	1.4		1.4	· <u>·</u>	
Voltage	Vон	ViH	-0.05	3	2.9		2.9		2.9	—]
		or	-0.05	4.5	4.4	_	4.4	—	4.4]
		ViL	-4	3	2.58	_	2.48		2.4	<u> </u>	l v
			-24	4.5	3.94	1	3.8	<u> </u>	3.7	·	· ·
	#, * { -75 5.5 3.85	3.85	-		<u> </u>						
		#, <u> </u>	-50	5.5	_		-	_	3.85		1
Low-Level Output		`	0.05	1.5	-	0.1	-	0.1	-	0.1	1
Voltage	VOL	ViH	0.05	3		0.1	_	0.1	—	0.1	
		or	0.05	4.5		0.1		0.1	-	0.1	1
		VIL	12	3	_	0.36	_	0.44	_	0.5] v [
			24	4.5		0.36	-	0.44	_	0.5	1
		#, * {	75	5.5	_		_	1.65	_	·	1
		<i>"</i> ,	50	5.5			_	_	· · ·	1.65	1
Input Leakage Current	h	V _{cc} or GND		5.5	_	±0.1	-	±1	_	±1	μΑ
3-State Leakage Current	loz	VH or VIL									
		V _o = V _{cc} or GND		5.5		±0.5		±5		±10	μA
Quiescent Supply Current, MSI	loc	V _{cc} or GND	0	5.5	_	8	_	80	_	160	μΑ

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. *Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

_ Technical Data

CD54/74AC240/241/244 CD54/74ACT240/241/244

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

						AMBIEN	Т ТЕМРЕ	RATURE	E (T _A) - ° (c]
CHARACTERISTICS		TEST CONDITIONS		V _{cc}	+	+25		o +85	-55 to +125		UNITS
		(V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	ViH			4.5 to 5.5	2		2		2	_	v
Low-Level Input Voltage	VıL			4.5 to 5.5	_	0.8		0.8		0.8	v
High-Level Output		ViH	-0.05	4.5	4.4		4.4	·	4.4		
Voltage	Vон	or Vi⊾ ,	-24	4.5	3.94		3.8	—	3.7	—	
		#, * {	-75	5.5	—		3.85		—]
			-50	5.5	—	_			· 3.85	—]
Low-Level Output		ViH	0.05	4.5		0.1		0.1	—	0.1]
Voltage	Vol	or ViL	24	4.5	_	0.36	—	0.44	-	0.5	v
		#, * {	75	5.5	_			1.65]
			50	5.5						1.65	
Input Leakage Current	l,	V _{cc} or GND		5.5		±0.1	_	±1	_	±1	μΑ
3-State Leakage Current	loz	ViH Or ViL									
		Vo = Vcc or		5.5		±0.5	`	±5		±10	μΑ
		GND									
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5	_	8		80	—	160	μA
Additional Quiescent S Current per Input Pi TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5	—	2.4		2.8	_	3	mA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

CD54/74ACT240					
INPUT UNIT LOADS					
nA0 - A3	1.42				
10E	0.83				
20E	0.83				

ACT INPUT LOADING TABLES CD54/74ACT241

INPUT

nA0 - A3

10Ē

20E

ACT241	CD54/74ACT244			
UNIT LOADS*	INPUT	UNIT LOADS		
0.5	nA0 - A3	0.5		
0.83	10E	0.83		
1.67	20E	0.83		

*Unit load is AI_{cc} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

9

Technical Data _ CD54/74AC240/241/244 CD54/74ACT240/241/244

÷.,

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C_L = 50 pF

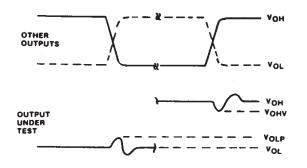
			AMBI				
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 te		
<u> </u>		(*)	MIN.	MAX.	MIN.	MAX.	1
Propagation Delays: Data to Outputs AC240	tplh tphl	1.5 3.3* 5†	2.6 1.9	82 9.2 6.5	 2.5 1.8	90 10.1 7.2	ns
AC241, 244	tplh tphl	1.5 3.3 5	3 2.2	93 10.5 7.5	 2.9 2.1	103 11.5 8.2	ns
Output Enable Times	tpzi. tpzh	1.5 3.3 5	 4.6 3.1	136 16.4 10.9	 4.5 3	150 18 12	ns
Output Disable Times	tplz tphz	1.5 3.3 5	 3.9 3.1	136 13.6 10.9	— 3.8 3	150 15 12	ns
Power Dissipation Capacitance AC240 AC241, 244	Cpd§			Тур. Тур.	65 Typ. 71 Typ.		pF
Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C			v	
Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Тур. @ 25°С		v		
Input Capacitance	Ci			10	-	10	pF
3-State Output Capacitance	Co			15		15	pF

SWITCHING CHARACTERISTICS: ACT Series; t, t, = 3 ns, CL = 50 pF

· · ·			AMBI	Γ _A) - °C			
CHARACTERISTICS	SYMBOL	V _{cc}	-40 to +85		-55 to	UNITS	
		(V)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Data to Outputs ACT240	tрін tphl	5†	2.3	7.8	2.2	8.6	ns
ACT241, 244	tрын tрнц	5	2.5	8.7	2.4	9.6	ns
Output Enable Times	tezi tezi	5	3.5	12.2	3.4	13.4	ns
Output Disable Times	tplz tphz	5	3.5	12.2	3.4	13.4	ns
Power Dissipation Capacitance ACT240 ACT241, 244	Сро§	_		Тур. Тур.	б5 Тур. 71 Тур.		pF
Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C			v	
Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C		v		
Input Capacitance	Ci		_	10	-	10	pF
3-State Output Capacitance	Co	_		15	_	15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per package. For AC series: $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ For ACT series: $P_D = V_{CC}^2 f_i (C_{PD} + C_L) + V_{CC} \Delta I_{CC}$ where f_i = input frequency


 C_L = output load capacitance

\$¹²,

 $V_{cc} =$ supply voltage.

Technical Data CD54/74AC240/241/244 CD54/74ACT240/241/244

PARAMETER MEASUREMENT INFORMATION

NOTES:

- 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST. 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS:
- PRA ≤ 1 MHZ, tr = 3 na, tr = 3 na, SKEW 1 na. 3. R.F. FIXTURE WITH 700-MHZ DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 # CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

9205-42406

Fig. 1 - Simultaneous switching transient waveforms.

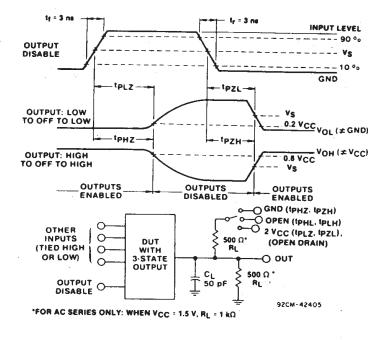
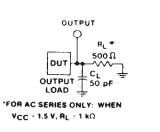
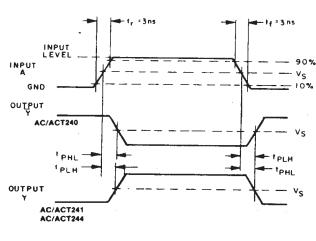




Fig. 2 - Three-state propagation delay times and test circuit.

9255 42389

9205-42407

Fig. 3 - Propagation delay times and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	V _{cc}	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{cc}

9

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings (4)	Samples
CD54AC240F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54AC240F3A	Samples
CD54AC244F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54AC244F3A	Samples
CD54ACT240F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54ACT240F3A	Samples
CD54ACT241F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54ACT241F3A	Samples
CD54ACT244F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54ACT244F3A	Samples
CD74AC240E	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC240E	Samples
CD74AC240EE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC240E	Samples
CD74AC240M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC240M	Samples
CD74AC240M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC240M	Samples
CD74AC240M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC240M	Samples
CD74AC240M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC240M	Samples
CD74AC240ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC240M	Samples
CD74AC240MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC240M	Samples
CD74AC244E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC244E	Samples
CD74AC244EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC244E	Samples
CD74AC244M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244M	Samples
CD74AC244M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244M	Samples
CD74AC244M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244M	Samples

PACKAGE OPTION ADDENDUM

11-Apr-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD74AC244M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244M	Samples
CD74AC244ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244M	Samples
CD74AC244MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244M	Samples
CD74AC244SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244SM	Samples
CD74AC244SM96E4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244SM	Samples
CD74AC244SM96G4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC244SM	Samples
CD74ACT240E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT240E	Sample
CD74ACT240EE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT240E	Samples
CD74ACT240M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT240M	Samples
CD74ACT240M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT240M	Samples
CD74ACT240M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT240M	Sample
CD74ACT240M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT240M	Samples
CD74ACT240ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT240M	Samples
CD74ACT240MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT240M	Sample
CD74ACT241E	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT241E	Sample
CD74ACT241EE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT241E	Sample
CD74ACT241M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT241M	Sample
CD74ACT241M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT241M	Samples

PACKAGE OPTION ADDENDUM

11-Apr-2013

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings (4)	Samples
CD74ACT241M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT241M	Samples
CD74ACT244E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT244E	Samples
CD74ACT244EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT244E	Samples
CD74ACT244M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244M	Samples
CD74ACT244M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244M	Samples
CD74ACT244M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244M	Samples
CD74ACT244M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244M	Samples
CD74ACT244ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244M	Samples
CD74ACT244MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244M	Samples
CD74ACT244SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244SM	Samples
CD74ACT244SM96E4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244SM	Samples
CD74ACT244SM96G4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT244SM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

PACKAGE OPTION ADDENDUM

11-Apr-2013

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

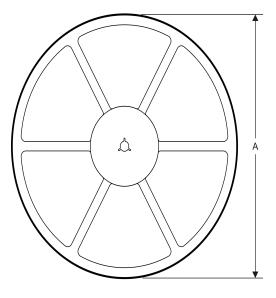
OTHER QUALIFIED VERSIONS OF CD54AC240, CD54AC244, CD54ACT240, CD54ACT241, CD54ACT244, CD74AC240, CD74AC244, CD74ACT240, CD74ACT241, CD74ACT244 :

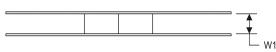
• Catalog: CD74AC240, CD74AC244, CD74ACT240, CD74ACT241, CD74ACT244

• Military: CD54AC240, CD54AC244, CD54ACT240, CD54ACT241, CD54ACT244

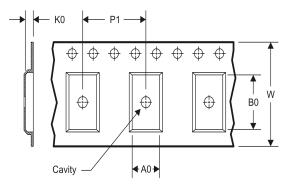
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

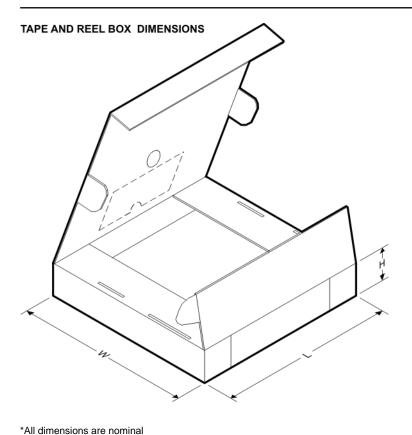
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC240M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74AC244M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74AC244SM96	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
CD74ACT240M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT241M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT244M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT244SM96	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

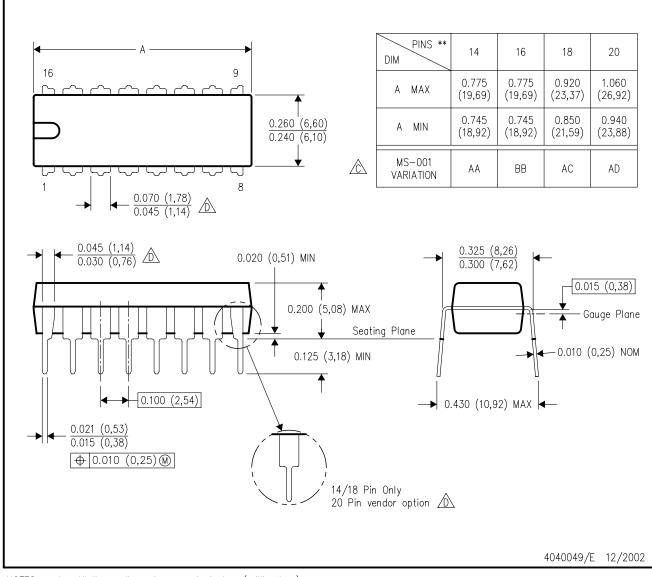
PACKAGE MATERIALS INFORMATION

14-Jul-2012

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC240M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74AC244M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74AC244SM96	SSOP	DB	20	2000	367.0	367.0	38.0
CD74ACT240M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT241M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT244M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT244SM96	SSOP	DB	20	2000	367.0	367.0	38.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

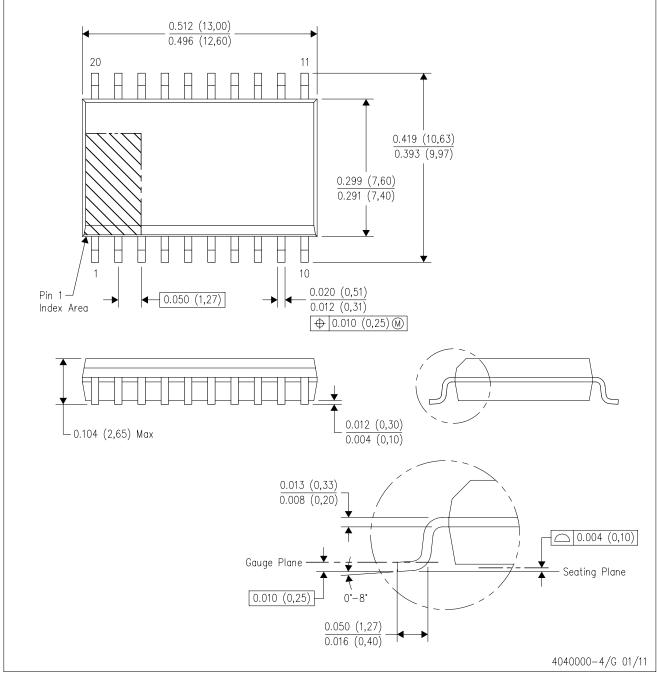

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

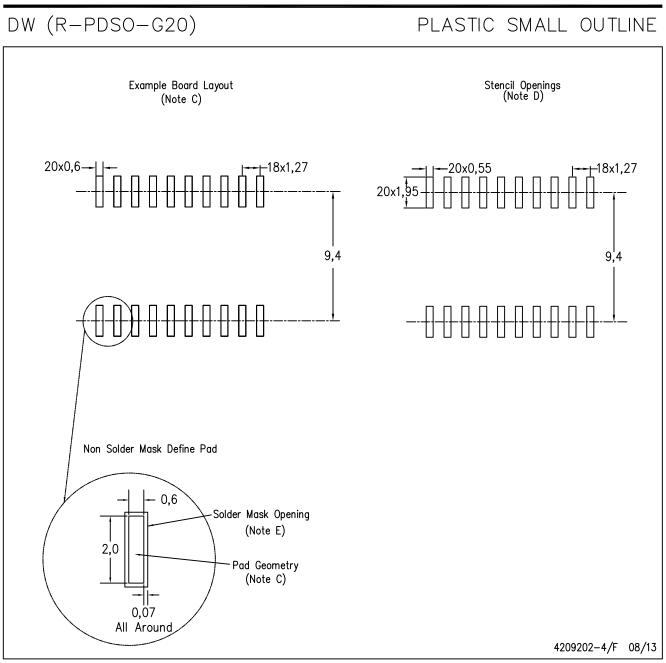

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

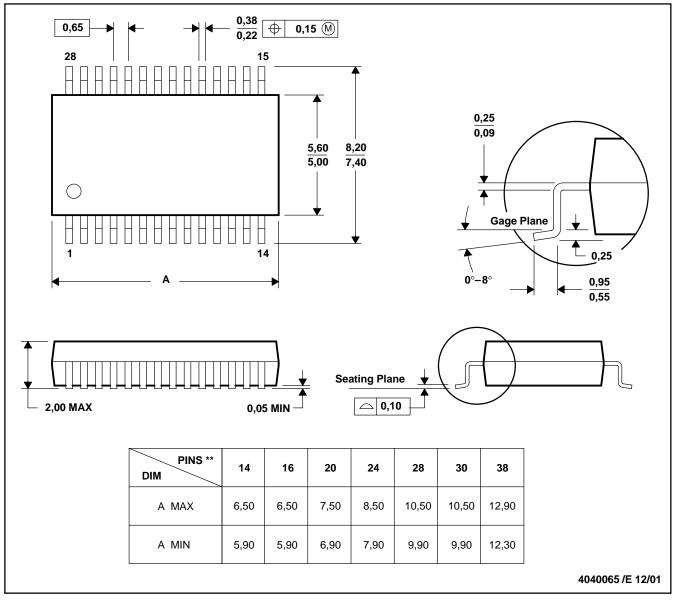
D. Falls within JEDEC MS-013 variation AC.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated