SN74ALVC74 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

SCES109E - JULY 1997 - REVISED JANUARY 1999

- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- Package Options Include Plastic Small-Outline (D), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

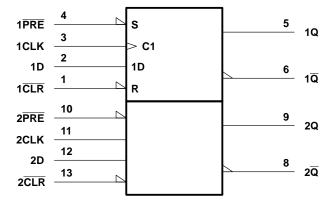
(TOP VIEW) 1CLR [□ v_{cc} 1D [13 2 CLR 2 1CLK [] 3 12 ¶ 2D 1PRE 14 11 2CLK 1Q [10 1 2 PRE 1Q [9 2Q 6 8 2 Q GND

D, DGV, OR PW PACKAGE

description

This dual positive-edge-triggered D-type flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input may be changed without affecting the levels at the outputs.

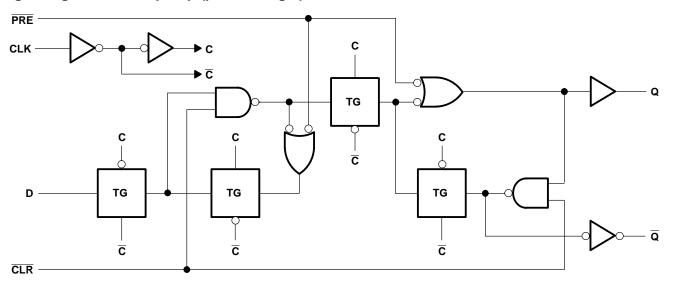

The SN74ALVC74 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

	INP	OUTI	PUTS		
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	X	Χ	L	Н
L	L	X	Χ	н†	H [†]
Н	Н	\uparrow	Н	Н	L
Н	Н	\uparrow	L	L	Н
Н	Н	L	Χ	Q_0	$\overline{\mathtt{Q}}_0$

[†] This configuration is unstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

EPIC is a trademark of Texas Instruments Incorporated

logic diagram, each flip-flop (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to 4.6 V
Output voltage range, VO (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): D package	127°C/W
DGV package	182°C/W
PW package	170°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

PRODUCT PREVIEW

SN74ALVC74 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

SCES109E - JULY 1997 - REVISED JANUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vcc	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		V	
٧ıH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7			
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
٧ _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	٧	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ı	Input voltage		0	VCC	V	
٧o	Output voltage		0	Vcc	V	
		V _{CC} = 1.65 V		-4		
lau	High level output gurrent	V _{CC} = 2.3 V		-12	mA	
ІОН	High-level output current	V _{CC} = 2.7 V		-12		
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
la.	Lavidaval autout avenat	V _{CC} = 2.3 V		12		
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA	
	V _{CC} = 3 V			24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYPT MA	X UNIT
	$I_{OH} = -100 \mu\text{A}$	1.65 V to 3.6 V	V _{CC} -0.2	2	
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		
	$I_{OH} = -6 \text{ mA}$	2.3 V	2		
Voн		2.3 V	1.7		V
	I _{OH} = -12 mA	2.7 V	2.2		
		3 V	2.4		
	I _{OH} = -24 mA	3 V	2		
	I _{OL} = 100 μA	1.65 V to 3.6 V		(.2
	I _{OL} = 4 mA	1.65 V		0.	15
W = .	I _{OL} = 6 mA	2.3 V		(.4 V
VOL	In. 42 mA	2.3 V		(.7 V
	I _{OL} = 12 mA	2.7 V		(.4
	I _{OL} = 24 mA	3 V		0.	55
lı	V _I = V _{CC} or GND	3.6 V		:	-5 μA
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V			20 μΑ
∆lcc	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V		7	50 μΑ
C _i	$V_I = V_{CC}$ or GND	3.3 V			pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SN74ALVC74 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

SCES109E - JULY 1997 - REVISED JANUARY 1999

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

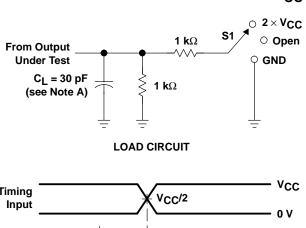
			V _{CC} =	1.8 V	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency										MHz	
_	Pulse duration	PRE or CLR low									ns	
t _W	Puise duration	CLK high or low									115	
	Catum time	Data before CLK↑									no	
t _{su}	Setup time	PRE or CLR inactive									ns	
th	Hold time	Data after CLK↑									ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM TO (INPUT) (OUTPUT)		V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 2.7 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
	(INFOT)	(OUTFUT)	TYP	MIN MAX	MIN MAX	MIN MAX	
f _{max}							MHz
+ .	CLK	Q or \overline{Q}					ns
^t pd	PRE or CLR	Q OF Q					115

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS		V _{CC} = 1.8V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
				TYP	TYP	TYP	ONIT
C _{pd} Power dissipation capacitance per flip-flop		$C_{L} = 0$,	f = 10 MHz				pF

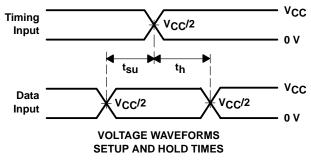


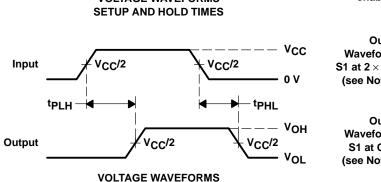
VCC

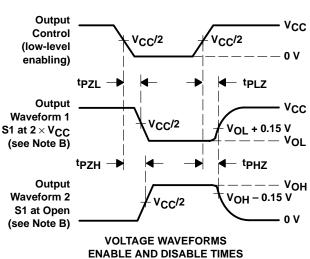
0 V

V_{CC}/2

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V



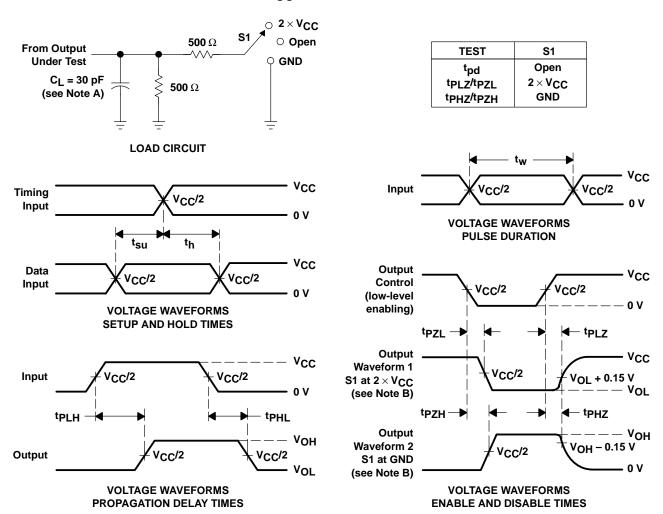

TEST	S 1
^t pd	Open
tPLZ/tPZL	2×V _{CC}
tPHZ/tPZH	GND


V_{CC}/2

VOLTAGE WAVEFORMS PULSE DURATION

Input

NOTES: A. C_L includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.

PROPAGATION DELAY TIMES

- F. tpz and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tod.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

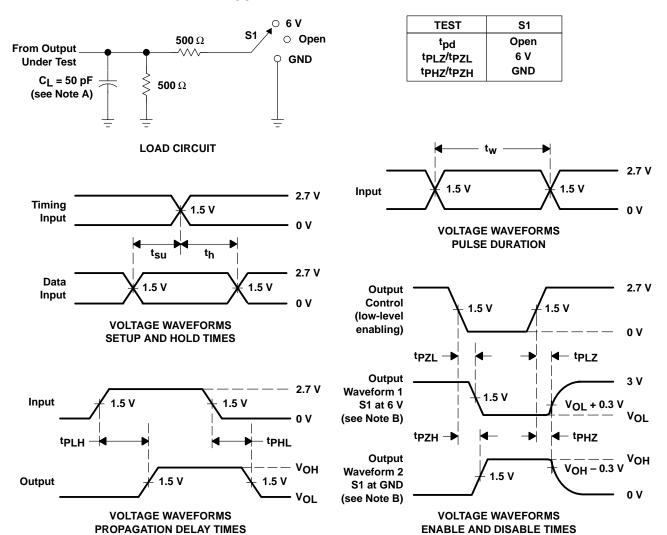

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms