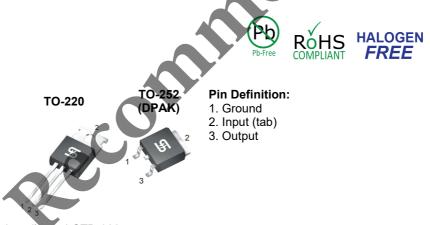


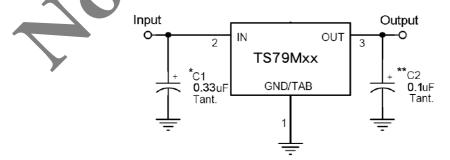
3-Termal 500mA Negative Voltage Regulator

DESCRIPTION


The TS79M00 series of fixed output negative voltage regulators are intended as complements to the popular TS78M00 series device. These negative regulators are available in the same seven-voltage options as the TS7900 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative TS79M00 Series. Available in fixed output voltage options from -5.0 and -12 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation--making them remarkably rugged under most operating conditions. With adequate heat sinking they can deliver output currents in excess of 0.5 ampere.

FEATURES

- Output Voltage: -5 & -12V
- Output current up to 0.5A
- No external components required
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance
- Compliant to RoHS Directive 2011/65/EU and WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21


APPLICATION

- Switching power supply
- Home appliance

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

A common ground is required between the input and the output voltages. The input voltage must remain typically 2V above the output voltage even during the low point on the Input ripple voltage.

1

XX = these two digits of the type number indicate voltage.

- * = C_{IN i}s required if regulator is located an appreciable distance from power supply filter.
- ** = C_{OUT} is not needed for stability; however, it does improve transient response.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	LIMIT	UNIT		
Input Voltage	V_{IN}	-35	V		
Power Dissipation	P_{D}	Internal Limited	W		
Operating Junction Temperature	T _J	0~+125	°C		
Storage Temperature Range	T _{STG}	-65~+150			

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	LIMIT		UNIT
PARAINETER		TO-220	TO-252	ONII
Junction to Case Thermal Resistance	R _{eJC}	5	6	°C/W
Junction to Ambient Thermal Resistance	R _{OJA}	65	92	°C/W

Notes: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air.

ELECTRICAL SPECIFICATIONS TS79M05						
$(V_{\text{IN}}\text{=-}10\text{V}, \text{ I}_{\text{OUT}}\text{=}350\text{mA}, 0^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq 125^{\circ}\text{C}, C_{\text{IN}}\text{=}0.33\mu\text{F}, C_{\text{OUT}}\text{=}0.1\mu\text{F}, \text{ unless otherwise noted)}$						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
	T _J =25°C		-4.80	-5	-5.20	
Output voltage	$-7.5V \le V_{IN} \le -20V$, $5mA \le I_{OUT} \le 500mA$, $P_D \le 5W$	V _{OUT}	-4.75	-5	-5.25	V
Line Degulation	-7.5V≤V _{IN} ≤-25V	REG _{LINE}		7	50	
Line Regulation	$T_J=25^{\circ}C$ $-8V \le V_{IN} \le -18V$			2	30	mV
Load Regulation	$T_{J}=25^{\circ}C$ $5mA \le I_{OUT} \le 500mA$ $5mA \le I_{OUT} \le 200mA$	REG _{LOAD}		20	100	
				10	50	
Quiescent Current	I _{OUT} =0, T _J =25°C	IQ		4	8	
Outleasent Comment Change	-7.5V≤V _{IN} ≤-25V	ΔI_Q			1	mA
Quiescent Current Change	5mA≤l _{OUT} ≤500mA				0.5	
Output Noise Voltage	10Hz≤f≤100kHz, T _J =25°C	V _N		40		μV
Ripple Rejection Ratio	f=120Hz, -8V≤V _{IN} ≤-18V	RR	54	66		dB
Voltage Drop	I _{OUT} =500mA, T _J =25°C	V_{DROP}		2		V
Peak Output Current	T _J =25°C	lo peak		2.1		Α
Temperature Coefficient of Output Voltage	I _{OUT} =5mA, 0°C≤T _J ≤125°C	$\Delta V_{OUT}/\Delta T_{J}$		-0.1		mV/°C

2

ELECTRICAL SPECIFICATIONS TS79M12 $(V_{\text{IN}}\text{=-}19\text{V},\,I_{\text{OUT}}\text{=}350\text{mA},\,0^{\circ}\text{C} \\ \leq \\ T_{\text{J}} \\ \leq \\ 125^{\circ}\text{C},\,C_{\text{IN}}\text{=}0.33\mu\text{F},\,C_{\text{OUT}}\text{=}0.1\mu\text{F},\,\text{unless otherwise noted})$ **CONDITIONS SYMBOL PARAMETER** MIN **TYP** MAX UNIT T_J=25°C -11.53 -12 -12.48 Output voltage ٧ V_{OUT} $-14.5V \le V_{IN} \le -27V$, -11.42 -12 -12.60 $5mA \le I_{OUT} \le 500mA$, $P_D \le 5W$ -14.5V \(\text{V}\) | \(\text{IN} \le -30\) 10 240 $T_J=25^{\circ}C$ Line Regulation **REGLINE** -15 $V \le V_{IN} \le$ -19V3 120 m۷ 12 4 240 $5mA{\le}I_{OUT}{\le}500mA$ Load Regulation $T_J=25^{\circ}C$ **REGLOAD** $5mA \le I_{OUT} \le 200mA$ 120 4 --**Quiescent Current** I_Q 8 $I_{OUT}=0$, $T_{J}=25^{\circ}C$ -14.5V \(\text{V}\)IN \(\text{S-30V}\) ΔI_{Q} 1 mΑ **Quiescent Current Change** $5mA \le I_{OUT} \le 500mA$ 0.5 Output Noise Voltage 10Hz≤f≤100kHz, T_J=25°C V_N 75 μV Ripple Rejection Ratio RR $f=120Hz, -15V \le V_{IN} \le -25V$ 70 dΒ Voltage Drop V_{DROP} I_{OUT} =500mA, T_J =25°C 2 ٧ **Peak Output Current** T_{.1}=25°C lo peak 2.1 Α Temperature Coefficient of mV/°C I_{OUT} =5mA, $0^{\circ}C \le T_{J} \le 125^{\circ}C$ $\Delta V_{OUT} / \Delta T_J$ -1 **Output Voltage**

Note:

- 1. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately
- 2. This specification applies only for DC power dissipation permitted by absolute maximum ratings.

ORDERING INFORMATION

OUTPYT VOLTAGE	PART NO.	PACKAGE	PACKING
F\/	TS79M05CZ C0G	TO-220	50pcs / Tube
5V	TS79M05CP ROG	TO-252	2,500pcs / 13" Reel
12V	TS79M12CP ROG	TO-252	2,500pcs / 13" Reel

3

CHARACTERISTICS CURVES

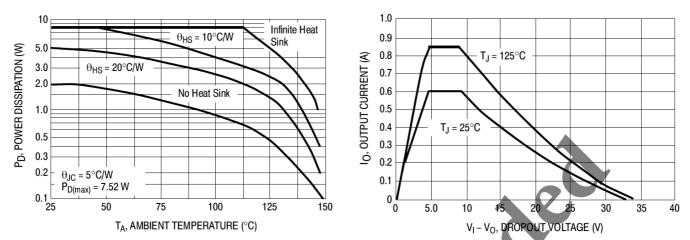
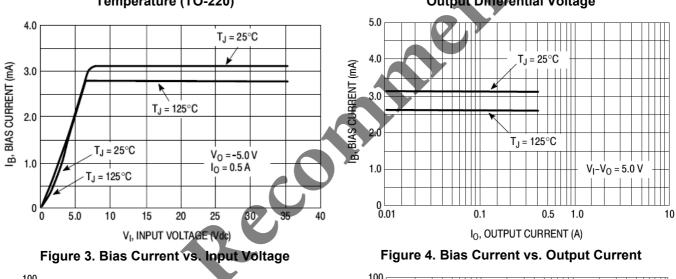



Figure 1. Worse Case Power Dissipation vs. Ambient Figure 2. Peak Output Current as a Function of Input-Temperature (TO-220) Output Differential Voltage

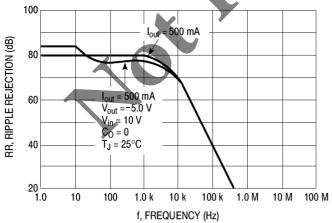


Figure 5. Ripple Rejection vs. Frequency

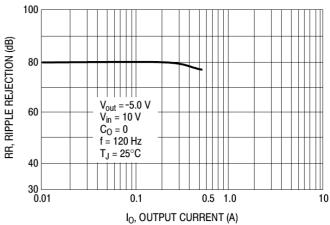


Figure 6. Ripple Rejection vs. Output Voltage

APPLICATION INFORMATION

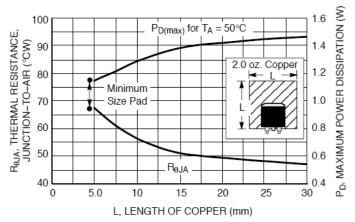
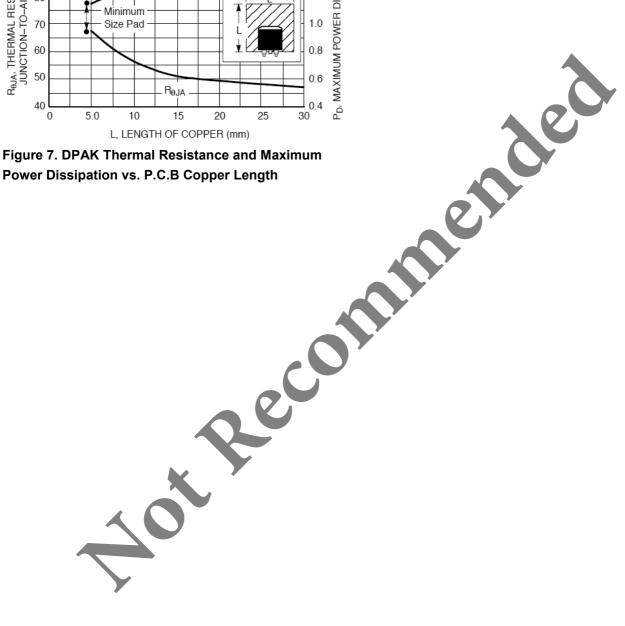
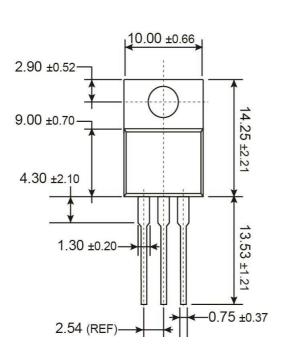
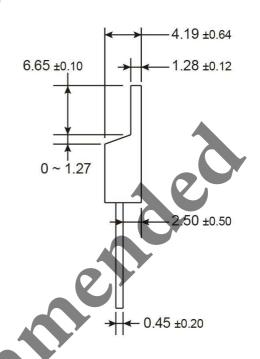



Figure 7. DPAK Thermal Resistance and Maximum




5

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TO-220

MARKING DIAGRAM

Y = Year Code

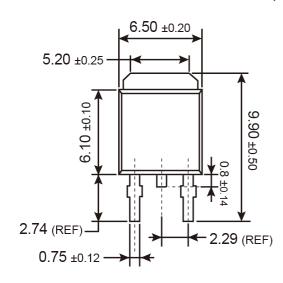
M = Month Code for Halogen Free Product

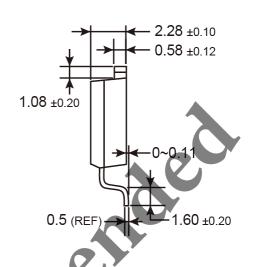
O =Jan P =Feb Q =Mar R =Apr

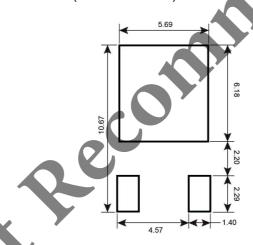
S =May T =Jun U =Jul V =Aug

W =Sep X =Oct Y =Nov Z =Dec

6


L = Lot Code


CZ = Package code


PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TO-252 (DPAK)

SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

XX = Output Voltage

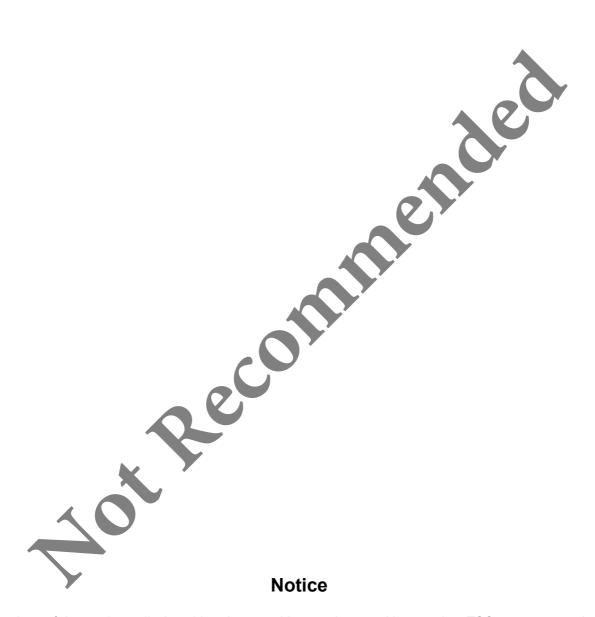
05 =-5V **12** =-12V

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr

S =May T =Jun U =Jul V =Aug


7

W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code

CP = Package code

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.