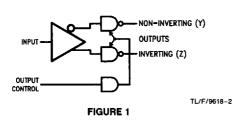


DS34F87/DS35F87 RS-422 Quad Line Driver with TRI-STATE® Outputs

General Description

The DS34F87/DS35F87 RS-422 Quad Line Driver features four independent drivers which comply with EIA Standards for the electrical characteristics of balanced voltages digital interface circuits. The outputs are TRI-STATE structures which are forced to a high impedance state when the appropriate output control lead reaches a logic zero condition. All input leads are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power-up and power-down.


The DS34F87/DS35F87 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS34F87/DS35F87 features lower power, extended temperature range, and improved specifications.

The DS34F87/DS35F87 offers optimum performance when used with the DS34F86/DS35F86 Quad Line Receiver.

Features

- Military temperature range
- Four independent drivers
- TRI-STATE outputs
- PNP high impedance inputs
- Fast propagation time
- TTL compatible
- 5.0V supply
- Output rise and falls times less than 15 ns
- Lead compatible and interchangeable with MC3487 and DS3487

Block and Connection Diagrams

OUT A 2 16 VCC OUT A 3 15 IN D OUT B 5 12 C/D OUT B 7 10 10 OUT C OUT B 8 8 IN C

16-Lead DIP

TL/F/9618-1

Function Table (Each Driver)

Input	Enable	Output		
		Y	Z	
Н	Н	Н	L	
L	н	L	Н	
X	L	Z	z	

H = High Level

L = Low Level

X = Immaterial

Z = High Impedance (off)

Order Number DS34F87J, DS34F87N or DS35F87J See NS Package Number J16A or N16A

Top View

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

Ceramic DIP -65°C to +175°C

Lead Temperature

Input Voltage

Ceramic DIP (soldering, 60 sec.)
Supply Voltage

300°C 8.0V 5.5V Maximum Power Dissipation* at 25°C

Cavity Package

*Derate cavity package 10 mW/*C above 25°C.

1500 mW

Operating Range

DS34F87

Temperature Supply Voltage

Supply Voltage

0°C to +70°C 4.75V to 5.25V

DS35F87 Temperature

-55°C to +125°C 4.5V to 5.5V

Electrical Characteristics over operating range, unless otherwise specified (Notes 2 & 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
V _{IL}	Input Voltage LOW				0.8	٧		
V _{IH}	Input Voltage HIGH		2.0	-		V		
η _L	Input Current LOW	V _{IL} = 0.5V			-200	μΑ		
I _{tH}	Input Current HIGH	V _{IH} = 2.7V			+ 50			
		V _{IH} = 5.5V			+ 100	μΑ		
V _{IC}	Input Clamp Voltage	$I_{\parallel} = -18 \text{ mA}$			-1.5	٧		
V _{OL}	Output Voltage LOW	I _{OL} = 48 mA			0.5	٧		
VoH	Output Voltage HIGH	$I_{OH} = -20 \text{mA}$	2.5	-		V		
los	Output Short Circuit Current (Note 4)	V _{IH} = 2.0V	- 40		-140	mA		
loz	Output Leakage Current Hi-Z State	$V_{IL} = 0.5V, V_{IL}(z) = 0.8V$			±100			
		$V_{IH} = 2.7V, V_{IL}(z) = 0.8V$			±100	- µА		
lOL(off)	Output Leakage Current Power Off	$V_{OH} = 6.0V, V_{CC} = 0V$		L	+ 100	μΑ		
		$V_{OL} = -0.25V, V_{CC} = 0V$			-100			
V _{OS} -∇ _{OS}	Output Offset Voltage Difference (Note 5)				±0.4	٧		
V _{OD}	Output Differential Voltage (Note 5)		2.0					
ΔV _{OD}	Output Differential Voltage Change				±0.4	٧		
lccx	Supply Current	Control Leads Gnd		-	50	mA		
lcc		Control Leads 2.0V			40	mA		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS35F87 and across the 0° C to $+70^{\circ}$ C range for the DS34F87. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into the device are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Note 5: Refer to EIA RS-422/3 for exact conditions.

TL/F/9618-3

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL}	Propagation Delay Times	High to Low Input			20	ns
t _{PLH}		Low to High Input			15	ns
t _{THL}	Output Transition Times—Differential	High to Low Input			15	ns
t _{TLH}		Low to High Input			15	ns
t _{PHZ(E)}	Propagation Delay Control to Output	$R_L = 200, C_L = 50 pF$			35	ns
t _{PLZ(E)}		R _L = 200, C _L = 50 pF			35	пѕ
t _{PZH(E)}		$R_L = \infty$, $C_L = 50 pF$			35	ns
t _{PZL(E)}		R _L = 200, C _L = 50 pF			35	ns
SKEW	Output to Output	Note 2			4.5	ns

Note 1: $C_L = 50 \text{ pF}$, $V_i = 1.5 \text{V to } V_O = 1.5 \text{V}$, $V_{PULSE} = 0 \text{V to } +3.0 \text{V}$.

Note 2: Skew is defined as the difference in propagation delays between complementary outputs at the 50% point.

Parameter Measurement Information

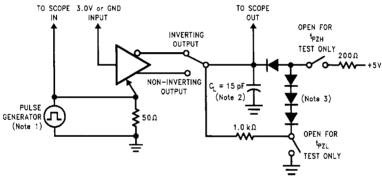
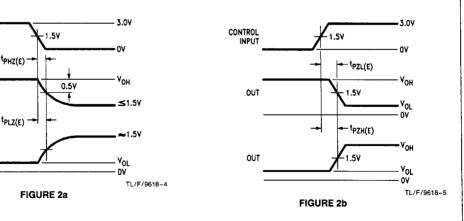



FIGURE 2. TRI-STATE Enable Test Circuit and Waveforms

CONTROL

INPUT

OUT

OUT

Parameter Measurement Information (Continued)

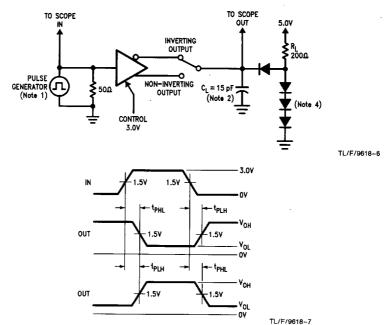


FIGURE 3. Propagation Delay Times Input to Output Waveforms and Test Circuit

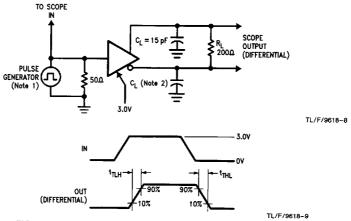


FIGURE 4. Output Transition Times Circuit and Waveforms

Note 1: The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, 50% duty cycle, t_{TLH} = t_{THL} ≤ 5.0 ns (10% to 90%), Z_O = 50Ω.

Note 2: C_L includes probe and jig capacitance.

Note 3: All diodes are IN3064 or equivalent.

Note 4: All diodes are IN914 or equivalent.