

ILC6660 CMOS Monolithic Voltage Converter

Features

- 0.5V Typ Loss at 100mA Load
- Low 120µA Operating Current
- 5.0Ω Typ Output Impedance
- Guaranteed $R_{OUT} < 10\Omega$ for $C1 = C2 = 100\mu$
- Inverts, Doubles or Splits Input Supply Voltage
- Selectable Oscillator Frequency: 5kHz/50kHz
- 90% Typ Conversion Efficiency at 100mA I_{OUT}
- 8-pin SOIC package.

Applications

- Laptop Computers
- Medical Instruments
- Interface Power Supplies
- Hand-Held Instruments
- Operational-Amplifier Power Supplies

Description

The ILC6660 monolithic, charge-pump voltage inverter converts a +1.5V to +5.5V input to a corresponding -1.5V to -5.5V output. Using only two low-cost capacitors, the charge pump's 100mA output replaces switching regulators, eliminating inductors and their associated cost, size, and EMI. Greater than 90% efficiency over most of its load-current range combined with a typical operating current of only 120 μ A provides ideal performance for both battery-powered and board-level voltage conversion applications. The ILC6660 can also double or split the output voltage of an input powered supply or battery, providing +9.5V or +2.3V at 100mA from a +5V input.

A frequency control (FC) pin selects either 5kHz typ or 50kHz typ (30kHz min) operation to optimize capacitor size and quiescent current. The Oscillator frequency can also be driven with an external clock. The ILC6660 is available in both 8-pin DIP and small-outline packages in commercial and extended temperature ranges.

Typical Applications

PRELIMINARY INFORMATION describes products that are in the design stage. Specifications may change in any manner whatever without notice. Contact Fairchild Semiconductor for current information.

Pin Assignments

Pin Definitions

Pin Number	Pin Name	Inverter	Splitter	Doubler
1	FC	Frequency Control for Internal Oscillator, FC open, $f_{OSC} = 5kHz$ typ; FC = V+, $f_{OSC} = 50kHz$ typ. FC has no effect when SYNC pin is driven externally	Same as Inverter	Same as Inverter
2	CAP+	Charge-Pump Capacitor, Positive Terminal	Same as Inverter	Same as Inverter
3	VSS	Power-Supply Ground Input	Power-Supply Positive Voltage Output	Power-Supplly Positive Voltage Input
4	CAP-	Charge-Pump Capacitor, Negative Terminal	Same as Inverter	Same as Inverter
5	VSH	Output, Negative Voltage	Power-Supply Ground Input	Power-Supply Ground Input
6	LV	Low-Voltage Operation Input. Tie LV to VSS when input voltage is less than 2V. Above 2V, LV must be left open.	LV must be left open for all input voltages	LV must be left open for all input voltages
7	SYNC	Oscillator Control Input. SYNC is connected to an internal 15pF capacitor. An external Oscillator may be connected to overdrive SYNC via a 25nF capacitor. SYNC shall not be connected to ground.	Same as inverter, hoever, do not use SYNC in voltage- splitting mode.	Same as inverter, however, do not use SYNC in voltage- doubling mode.
8	V+	Power-Supply Positive Voltage Input	Positive Voltage Input	Positive Voltage Output

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Ratings	Units
Supply Voltage (V+ to VSS, or VSS to VSH)	V _{IN}	+6	V
LV, FC and OSC Input Voltage	V _{IN}	VSH -0.3 to V+ +0.3	V
VSH and V+ Continues Output Current	I _{VSH}	120	mA
Output Short-Circuit Durations to GND (Note 2)	I _{SC}	Not internally protected	А
Continuous Power Dissipation (T=+85C)	P _D	470	mW
Operation Temperature Ranges	T _A	-40 to +85	°C
Maximum Junction Temperature	T _{J(max)}	150	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C
Lead Temperature (soldering, 10sec)		300	°C
Package Thermal Resistance	θ_{JA}	138	°C/W

Notes:

1. Absolute maximum ratings indicate limits which, when exceeded, may result in damage to the component. Electrical specifications do not apply when operating the device outside its rated operating conditions.

2. VSH must not be shorted to VSS or V+, even instantaneously, or device damage may result.

Electrical Characteristics ILC6660IK

Unless otherwise specified, all limits are at $_A = 25^{\circ}C$; V+ = 5V,C1 = C2 = 100 μ F, test circuit Figure 1, FC = open. The • denotes specifications which apply over the specified operating temperature range. (Note 3)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Operating Supply	V _{IN}	$R_L = 1k\Omega$, LV open		3.0		5.5	V
Voltage	$R_L = 1k\Omega$, $LV = VSS$			1.5		2	V
		$R_L = 1k\Omega, LV = VSS$		2		5.5	
Supply Current	I _{IN}	VSH = open, FC + open, LV = open			120	300	μA
		VSH = open, FC = V+, LV = open			1	2	mA
Output Current	I _{VSH}	VSH more negative than -4V		100			mA
Output Resistance	R _{VSH}	I _L = 100mA			5.0	10	W
(Note 4)							
Oscillator Frequency	f _{OSC}	FC = open	•	2.5	5.0	10.0	kHz
		FC = V+	•	30	50	90.0	kHz
Power Efficiency		$RL = 1k\Omega$, connected between V+ and		96	98		%
		VSH					
	η	$R_L = 500\Omega$, between VSH and VSS		92	96		%
		I _L = 100mA			90		%
Voltage-Conversion		No Load		99.00	99.96		%
Efficiency							

Notes:

3. Specified min/max limits are production tested or guaranteed through correlation based on statistical control methods.

4. Specified output resistance is a combination of internal switch resistance and capacitor ESR.

Figure 1: Test Circuuit

Detailed Description

The ILC6660 capacitive charge-pump circuit either inverts, splits or doubles the input voltage (see Typical Circuits). For highest performance, low effective series resistance (ESR) capacitors should be used (see Capacitor Selection section for more details). When using the inverting mode with a supply voltage less than 2V,LV may be connected to VSS. This bypasses the internal regulator circuitry and provides best performance in low-voltage applications. When using the inverter mode with a supply voltage above 2V, LV must be left open.

Applications Information

Negative Voltage Converter

The most common application of the ILC6660 is as a chargepump voltage inverter. The operating circuit uses only two external capacitors, C1 and C2 (see Typical Circuits). Even though its output is not actively regulated, the ILC6660 is very insensitive to load current changes. A typical output source resistance of 5Ω means that with an input of +5V the output voltage is -5V under light load, and decreases only to 4.5V with a load of 100mA.

Capacitors selection

Low ESR capacitors should be used at the output of ILC6660 to minimize output ripple. This can be achieved using ceramic capacitors, but may also be met with certain types of tantalum capacitors.

Output ripple voltage is calculated taking into account that the output current is solely supplied from capacitor C2 during one-half of the charge-pump cycle. This introduces a peak-to-peak ripple of:

$$V RIPPLE = \frac{I VSH}{2(f PUMP)(C2)} + I VSH (ESRC2)$$

For a nominal fPUMP of 5kHz and $C2 = 100\mu F$ with an ESR of 0.05 Ω ripple is approximately 100mV with a 100mA load current. If C2 is raised to 470 μ F, the ripple drops to approximately 25mV.

©2001 Fairchild Semiconductor Corporation

Positive Voltage Doubler

The ILC6660 operates in the voltage-doubling mode as shown in the Typical Circuit. The no-load output is $2 \times V_{IN}$.

Positive Voltage Splitter

The ILC6660 operates in voltage splitting mode as shown in the Typical Circuit. The no-load output is $V_{IN}/2$.

Changing Oscillator Frequency

Three modes control the ILC6660's clock frequency, as listed below:

FC	SYNC	Oscillator Frequency
Open	Open	5kHz
FC = V+	Open	50kHz
Open	External Clock	External Clock Frequency

When FC and SYNC are unconnected (open), the Oscillator runs at 5kHz typically. When FC is connected to V+, the charge and discharge current change from 1.0µA to 10.0µA, thus increasing the Oscillator frequency 10 times. In the inverter mode, SYNC may also be overdriven by an external clock source. A square wave signal of maximum 2V peakto-peak may be applied to SYNC via a 2...5nF capacitor to overdrive the internal oscillator. When SYNC is overdriven, FC has no effect. In some applications, the 5kHz output ripple frequency may be low enough to interfere with other circuitry. If desired, the Oscillator frequency can then be increased through use of the FC pin or an external Oscillator as described above. Increasing the clock frequency increases the ILC6660's quiescent current, but also allows smaller capacitance values to be used for C1 and C2.

Packaging Information

M Package, 8-Pin Small-Outline

N Package, 8-Pin Dual In-Line

Ordering Information $T_A = 40^{\circ}C$ to = 85°C

Product Number	Package
ILC6660IK	8-Pin SOIC

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com