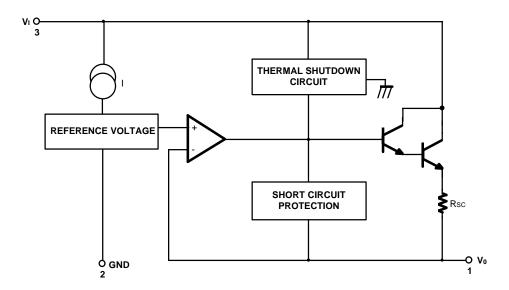

3-TERMINAL 0.1A POSITIVE VOLTAGE REGULATORS

The MC78LXX series of fixed voltage monolithic integrated circuit voltage regulators are suitable for application that required supply

FEATURES


- Maximum Output Current of 100mA
 Output Voltage of 5V, 6V, 8V, 9V, 10V, 12V, 15V, 18V and 24V
- Thermal Overload Protection
- Short Circuit Current Limiting
- Output Voltage Offered in ± 5% Tolerance

ORDERING INFORMATION

Device	Package	Operating Temperature
MC78LXXACP (LM78LXXACZ) (KA78LXXAZ)	TO-92	- 45 ~ + 125°C °
MC78LXXACD (KA78LXXAD)	8 SOP	0 ~ + 125°C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \,^{\circ}\text{C}$, unless otherwise specified)

Characteristic	Symbol	Value	Unit
Input Voltage (for V _O = 5V, 8V)	V _I	30	V
(for $V_0 = 12V, 15V$)		35	V
Operating Junction Temperature Range	TJ	0 ~ +150	°C
Storage Temperature Range	T _{STG}	-65 ~ + 150	°C

LM78L05 ELECTRICAL CHARACTERISTICS

 $(V_I=10V,\,I_O=40\text{mA},\,0\,^{\circ}C\leq T_J\leq 125\,^{\circ}C,\,C_I=0.33\,\mu\text{F},\,C_O=0.1\mu\text{F},\,\text{unless otherwise specified}.\,(\text{Note 1})$

Characte	eristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		4.8	5.0	5.2	V
Line Demoleties				$7V \le V_I \le 20V$		8	150	mV
Line Regulation		ΔV _O	$T_J = 25^{\circ}C$	$8V \le V_I \le 20V$		6	100	mV
6 .:		ΔV_{Ω}	T 0500	$1mA \le I_O \le 100mA$		11	60	mV
Load Regulation	Load Regulation		$T_J = 25^{\circ}C$	$1mA \le I_0 \le 40mA$		5.0	30	mV
			$7V \le V_1 \le 0V$	$1mA \le I_O \le 40mA$			5.25	V
Output Voltage	Output Voltage		$7V \le V_1 \le V_{MAX}$ (Note 2)	$1mA \leq I_O \leq 70mA$	4.75		5.25	V
Quiescent Current		lα	T _J = 25 °C			2.0	5.5	mA
Quiescent Current	with line	ΔI_Q	$8V \le V_1 \le 20V$				1.5	mA
Change	with load	ΔI_Q	$1 \text{mA} \le I_0 \le 40 \text{ m}$	ıΑ			0.1	mA
Output Noise Voltag	е	V _N	$T_A = 25 ^{\circ}\text{C}, 10\text{Hz} \le f \le 100\text{KHz}$			40		μV/V _O
Temperature Coefficient of V _O		ΔV _O /ΔΤ	I _O = 5mA			-0.65		mV/°C
Ripple Rejection RR f		$f = 120Hz, 8V \le V_1 \le 18V, T_J = 25^{\circ}C$		41	80		dB	
Dropout Voltage		V_D	T _{.1} = 25 °C			1.7		V

LM78L06 ELECTRICAL CHARACTERISTICS

 $(V_I=12V,\,I_O=40mA,\,0\,^{\circ}C\leq T_J\leq 125\,^{\circ}C\,\,,\,C_I=0.33\mu F,\,C_O=0.1\mu F,\,unless\,\,otherwise\,\,specified.\,\,(Note\,\,1)$

Characteri	stic	Symbol	Т	est Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		5.75	6.0	6.25	V
Line Demulation		41/		8.5V < V _I < 20V		64	175	mV
Line Regulation		ΔV_{O}	T _J =25 °C	$9V \geq V_i \geq 20V$		54	125	mV
		41/	T 07:0	1mA < I _O < 100mA		12.8	80	mV
Load Regulation		ΔV_{O}	T _J =25 °C	1mA < I _O < 70mA		5.8	40	mV
Output Voltage		Vo	$8.5 < V_1 < 20V$	1mA < I _O < 40mA	5.7		6.3	
Output voltage		v _o	$8.5 < V_I < V_{MAX}(Note), 1 mA < I_O < 70 mA$		5.7		6.3	V
			T _J = 25 °C			3.9	6.0	mA
Quiescent Current		lα	T _J = 125 °C				5.5	111/4
Quiescent Current	with line	ΔI_Q	$9 < V_1 < 20V$				1.5	
Change	with load	ΔI_Q	1mA < I _O < 40m	nA			0.1	mA
Output Noise Voltag	e	V _N	T _A = 25 °C, 10H	Hz < f < 100KHz		40		μV/V _O
Temperature Coeffic	cient of V _O	ΔV _O /ΔΤ	I _O = 5mA			0.75		mV/°C
Ripple Rejection		RR	f = 120Hz, 10V < V _I < 20V, T _J = 25 °C		40	46		dB
Dropout Voltage		V_D	T _J = 25 °C			1.7		V

LM78L08 ELECTRICAL CHARACTERISTICS

 $(V_I=14V,~I_O=40mA,~0~^{\circ}C \leq T_J \leq 125~^{\circ}C,~C_I=0.33~\mu F,~C_O=0.1\mu F,~unless~otherwise~specified.~(Note~1)$

Characteri	stic	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		7.7	8.0	8.3	V
				$10.5 \text{V} \leq \text{V}_{\text{I}} \leq 23 \text{V}$		10	175	mV
Line Regulation		ΔV_{O}	T _J =25 °C	$11V \le V_1 \le 23V$		8	125	mV
1 15 17			T 0500	$1mA \le I_0 \le 100mA$		15	80	mV
Load Regulation		ΔV_{O}	T _J =25 °C	$1mA \leq I_O \leq 40mA$		8.0	40	mV
			$10.5 V \leq V_I \leq 23 V$	$1mA \le I_0 \le 40mA$	7.6		8.4	V
Output Voltage		Vo	$10.5V \le V_1 \le V_{MAX}$ (Note 2)	$1mA \le I_0 \le 70mA$	7.6		8.4	٧
Quiescent Current		ΙQ	T _J = 25 °C			2.0	5.5	mA
Quiescent Current	with line	ΔI_Q	$11 \text{V} \leq \text{V}_1 \leq 23 \text{V}$				1.5	mA
Change	with load	ΔI_Q	$1mA \le I_O \le 40mA$				0.1	mA
Output Noise Voltag	e	V _N	T _A = 25 °C, 10Hz ≤	f≤100KHz		60		μV/V _O
Temperature Coeffic	cient of V _O	$\Delta V_{O}/\Delta T$	I _O = 5mA			-0.8		mV/°C
Ripple Rejection		RR	$f = 120Hz, 11V \le V_1 \le 21V, T_J = 25 ^{\circ}C$		39	70		dB
Dropout Voltage		V_D	T _J = 25 °C			1.7		V

LM78L09 ELECTRICAL CHARACTERISTICS

 $(V_I = 15V, I_O = 40mA, 0 \degree C \le T_J \le 125 \degree C, C_I = 0.33 \ \mu F, C_O = 0.1 \mu F, unless otherwise specified. (Note 1)$

Characteri	stic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		8.64	9.0	9.36	V
Line Demoleties				$11.5 \text{V} \leq \text{V}_{\text{I}} \leq 24 \text{V}$		90	200	mV
Line Regulation		ΔV_{O}	T _J =25°C	$13V \leq V_I \leq 24V$		100	150	mV
			T 0500	$1mA \leq I_O \leq 100mA$		20	90	mV
Load Regulation		ΔV_{O}	T _J =25 °C	$1mA \leq I_O \leq 40mA$		10	45	mV
			$11.5 \text{V} \leq \text{V}_{\text{I}} \leq 24 \text{V}$	$1mA \leq I_O \leq 40mA$	8.55		9.45	V
Output Voltage	tage V		$11.5V \le V_{I} \le V_{MAX}$ (Note 2)	$1mA \le I_0 \le 70mA$	8.55		9.45	٧
Quiescent Current		ΙQ	T _J = 25 °C			2.1	6.0	mA
Quiescent Current	with line	ΔI_Q	$13V \le V_1 \le 24V$				1.5	mA
Change	with load	ΔI_Q	$1mA \le I_0 \le 40mA$				0.1	mA
Output Noise Voltage	е	V _N	T _A = 25 °C, 10Hz ≤	f ≤ 100KHz		70		μV/V _O
Temperature Coeffic	eient of Vo	ΔV _O /ΔΤ	- I _O = 5mA			-0.9		mV/°C
Ripple Rejection	e Rejection RR $f = 120Hz, 12V \le V_1 \le 22V, T_J = 25$ °C		ı ≤ 22V, T _J = 25 °C	38	44		dB	
Dropout Voltage		V _D	T _J = 25 °C			1.7		V

LM78L10 ELECTRICAL CHARACTERISTICS

 $(V_1 = 16V, I_O = 40mA, 0 \, ^{\circ}C < T_J < 125 \, ^{\circ}C, C_1 = 0.33 \, \mu F, C_O = 0.1 \mu F, unless otherwise specified. (Note 1)$

Characteris	tic	Symbol	Te	Test Conditions			Max	Unit
Output Voltage		Vo	T _J = 25 °C		9.6	10.0	10.4	V
		41/	_	12.5 < V _I < 25V		100	220	mV
Line Regulation		ΔV_{O}	T _J =25 °C	$14V \ge V_1 \ge 25V$		100	170	mV
		41/	T 0500	1mA < I _O < 100mA		20	94	mV
Load Regulation		ΔV_{O}	T _J =25 °C	1mA < I _O < 70mA		10	47	mV
Output Valtage		W	$12.5 < V_1 < 25V$	12.5 < V _I < 25V, 1mA < I _O < 40mA			10.5	
Output Voltage		Vo	12.5 < V_1 < V_{MAX} (Note), 1mA < I_0 < 70mA		9.5		10.5	V
			T _J = 25 °C	T _J = 25 °C		4.2	6.5	A
Quiescent Current		lα	T _J = 125 °C				6.0	mA
Quiescent Current	with line	ΔI_Q	$12.5 < V_1 < 25V$				1.5	mA
Change	with load	ΔI_Q	1mA < I ₀ < 40m/	4			0.1	IIIA
Output Noise Voltag	е	V_N	T _A = 25 °C, 10H;	z < f < 100KHz		74		$\mu V/V_O$
Temperature Coeffic	cient of Vo	$\Delta V_{O}/\Delta T$	I _O = 5mA			0.95		mV/°C
Ripple Rejection		RR	f = 120Hz, 15V < V _I < 25V, T _J = 25 °C		38	43		dB
Dropout Voltage		V_D	T _J = 25 °C			1.7		V

LM78L12 ELECTRICAL CHARACTERISTICS

 $(V_I = 19V, I_O = 40mA, 0 \degree C \le T_J \le 125 \degree C, C_I = 0.33 \ \mu F, C_O = 0.1 \mu F, unless otherwise specified. (Note 1)$

Characteri	stic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		11.5	12	12.5	V
				$14.5 \text{V} \leq \text{V}_{\text{I}} \leq 27 \text{V}$		20	250	mV
Line Regulation		ΔV_{O}	T _J =25 °C	$16V \le V_1 \le 27V$		15	200	mV
			T 05:00	$1mA \le I_0 \le 100mA$		20	100	mV
Load Regulation		ΔV_{O}	T _J =25 °C	$1mA \leq I_O \leq 40mA$		10	50	mV
			$14.5 \text{V} \leq \text{V}_{\text{I}} \leq 27 \text{V}$	$1mA \le I_0 \le 40mA$	11.4		12.6	V
Output Voltage		Vo	14.5V ≤ V _I ≤ V _{MAX} (Note 2)	$1 \text{mA} \le I_0 \le 70 \text{mA}$	11.4		12.6	٧
Quiescent Current		ΙQ	T _J = 25 °C			2.1	6.0	mA
Quiescent Current	with line	ΔI_Q	$16V \le V_I \le 27V$				1.5	mA
Change	with load	ΔI_Q	$1mA \le I_0 \le 40mA$				0.1	mA
Output Noise Voltage	е	V_N	T _A = 25 °C, 10Hz ≤	f ≤ 100KHz		80		$\mu V/V_O$
Temperature Coeffic	eient of V _O	ΔV _O /ΔΤ	I _O = 5mA			-1.0		mV/°C
Ripple Rejection		RR	$f = 120Hz, 15V \le V_1 \le 25V, T_J = 25$ °C		37	65		dB
Dropout Voltage		V _D	T _J = 25 °C			1.7		V

LM78L15 ELECTRICAL CHARACTERISTICS

 $(V_1 = 23V, I_O = 40mA, 0 \degree C \le T_J \le 125 \degree C, C_1 = 0.33 \ \mu F, C_O = 0.1 \mu F, unless otherwise specified. (Note 1)$

Characteri	stic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		14.4	15	15.6	٧
1: D 1:				$17.5 \text{V} \leq \text{V}_{\text{I}} \leq 30 \text{V}$		25	300	mV
Line Regulation		ΔV_{O}	T _J =25°C	$20V \le V_1 \le 30V$		20	250	mV
			T 0500	$1mA \le I_O \le 100mA$		25	150	mV
Load Regulation		ΔV_{O}	T _J =25 °C	$1mA \le I_0 \le 40mA$		12	75	mV
			$17.5 \text{V} \leq \text{V}_1 \leq 30 \text{V}$	$1mA \le I_0 \le 40mA$	14.25		15.75	V
Output Voltage	oltage		$17.5V \le V_I \le V_{MAX}$ (Note 2)	$1 \text{mA} \le I_0 \le 70 \text{mA}$	14.25		15.75	V
Quiescent Current		ΙQ	T _J = 25 °C			2.1	6.0	mA
Quiescent Current	with line	ΔI_Q	$20 V \leq V_I \leq 30 V$				1.5	mA
Change	with load	ΔI_Q	$1mA \le I_0 \le 40mA$				0.1	mA
Output Noise Voltag	е	V_N	T _A = 25 °C, 10Hz ≤	f ≤ 100KHz		90		μV/V _O
Temperature Coeffic	cient of Vo	ΔV _O /ΔΤ	I _O = 5mA			-1.3		mV/°C
Ripple Rejection		RR	$f = 120Hz, 18.5V \le V_1 \le 28.5V, T_3 = 25 ^{\circ}C$		34	60		dB
Dropout Voltage		V_D	T _J = 25 °C			1.7		V

LM78L18 ELECTRICAL CHARACTERISTICS

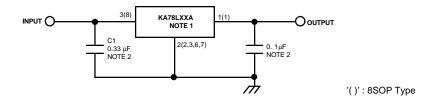
 $(V_1 = 27V, I_O = 40mA, 0 \degree C \le T_J \le 125 \degree C, C_1 = 0.33 \ \mu F, C_O = 0.1 \mu F, unless otherwise specified. (Note 1)$

Characteri	stic	Symbol	Test	t Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = 25 °C		17.3	18	18.7	V
Line Degulation				$21 \text{V} \leq \text{V}_{\text{I}} \leq 33 \text{V}$		145	300	mV
Line Regulation		ΔV_{O}	T _J =25 °C	$22V \leq V_I \leq 33V$		135	250	mV
			T 0500	$1mA \le I_0 \le 100mA$		30	170	mV
Load Regulation		ΔV_{O}	T _J =25 °C	$1mA \leq I_O \leq 40mA$		15	85	mV
			$21V \le V_1 \le 33V$	$1mA \le I_O \le 40mA$	17.1		18.9	V
Output Voltage		Vo	21V ≤ V _I ≤ V _{MAX} (Note 2)	$1mA \le I_O \le 70mA$	17.1		18.9	V
Quiescent Current		ΙQ	T _J = 25 °C			2.2	6.0	mA
Quiescent Current	with line	ΔI_Q	$21V \le V_1 \le 33V$				1.5	mA
Change	with load	ΔI_Q	$1mA \le I_O \le 40mA$				0.1	mA
Output Noise Voltage	e	V _N	T _A = 25 °C, 10Hz ≤	≤ f ≤ 100KHz		150		μV/V _O
Temperature Coeffic	ient of V _O	ΔV _O /ΔΤ	I _O = 5mA			-1.8		mV/°C
Ripple Rejection		RR	$f = 120Hz, 23V \le V_1 \le 33V, T_J = 25 ^{\circ}C$		34	48		dB
Dropout Voltage		V_D	T _J = 25 °C			1.7		V

LM78L24 ELECTRICAL CHARACTERISTICS

 $(V_I=33V,\,I_O=40mA,\,0\,^{\circ}C\leq T_J\leq 125\,^{\circ}C,\,C_I=0.33~\mu F,\,C_O=0.1\mu F,\,unless~otherwise~specified.~(Note~1)$

Characteri	stic	Symbol	Test	t Conditions	Min	Тур	Max	Unit				
Output Voltage		Vo	T _J = 25 °C		23	24	25	V				
5				$27V \le V_1 \le 38V$		160	300	mV				
Line Regulation		ΔV_{O}	T _J =25 °C	$28V \le V_1 \le 38V$		150	250	mV				
				$1mA \le I_0 \le 100mA$		40	200	mV				
Load Regulation		ΔV_{O}	T _J =25 °C	$1mA \le I_0 \le 40mA$		20	100	mV				
			$27V \le V_1 \le 38V$	$1mA \le I_0 \le 40mA$	22.8		25.2	V				
Output Voltage		Vo	27V ≤ V _I ≤ V _{MAX} (Note 2)	$1mA \le I_0 \le 70mA$	22.8		25.2	>				
Quiescent Current		ΙQ	T _J = 25°C			2.2	6.0	mA				
Quiescent Current	with line	ΔI_Q	$28V \le V_1 \le 38V$				1.5	mA				
Change	with load	ΔI_Q	$1mA \leq I_O \leq 40mA$				0.1	mA				
Output Noise Voltage	е	V_N	T _A = 25 °C, 10Hz ≤	≤ f ≤ 100KHz		200		μV/V _O				
Temperature Coeffic	cient of Vo	$\Delta V_{O}/\Delta T$	- I _O = 5mA		I _O = 5mA		$I_{O} = 5mA$			-2.0		mV/°C
Ripple Rejection		RR	$f = 120Hz, 28V \le V_1 \le 38V, T_J = 25 ^{\circ}C$		34	45		dB				
Dropout Voltage	•	V_D	T _J = 25 °C			1.7		V				


Notes

^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation \leq 0.75W.

TYPICAL APPLICATION

- To specify an output voltage, substitute voltage value for "XX".
 Bypass Capacitors are recommend for optimum stability and transient response and should be located as close as possible to the regulator

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

E²CMOS[™] PowerTrench[®]
FACT[™] QFET[™]
FACT Quiet Series[™] QS[™]

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-}3 \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-}6 \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-}8 \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.