FEATURES - ☐ 2K×8 Static RAM with Chip Select Powerdown, Output Enable - ☐ Auto-Powerdown™ Design - ☐ Advanced CMOS Technology - ☐ High Speed to 10 ns maximum - ☐ Low Power Operation Active: 250 mW typical at 35 ns Standby (typical): 100 μW (L6116) 100 μW (L6116) 50 μW (L6116–Low Power) - ☐ Data Retention at 2 V for Battery Backup Operation - ☐ Available 100% Screened to MIL-STD-883, Class B - DESC SMD Drawing No. 5962-84036 L6116 5962-89690 L6116 5962-88740 L6116-Low Power - ☐ Plug Compatible with IDT6116, Cypress CY7C128/CY6116 - ☐ Package Styles Available: - 24-pin Plastic DIP - 24-pin CerDIP - 24-pin Plastic SOJ - 24-pin CerFlat - 28-pin Ceramic LCC - 32-pin Ceramic LCC #### DESCRIPTION The L6116 is a high-performance, low-power CMOS static RAM. The storage circuitry is organized as 2048 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. These devices are available in six speeds with maximum access times from 10 ns to 35 ns. Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption for the L6116 is 250 mW (typical) at 35 ns. Dissipation drops to 75 mW (typical) for the L6116 and 60 mW (typical) for the L6116-L when the memory is deselected (Enable is high). Two standby modes are available. Proprietary Auto-PowerdownTM circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L6116 and L6116-L consume only 15 μ W and 6 μ W (typical) respectively, at 3 V, allowing effective battery backup operation. The L6116 provides asynchronous (unclocked) operation with matching access and cycle times. An active-low Chip Enable and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity. Memory locations are specified on address pins A0 through A10. Reading from a designated location is accomplished by presenting an address and driving \overline{CE} and \overline{OE} low, while \overline{WE} remains high. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when \overline{CE} or \overline{OE} is high, or \overline{WE} is low. Writing to an addressed location is accomplished when the active-low CE and WE inputs are both low. Either signal may be used to terminate the write operation. Data In and Data Out signals have the same polarity. Latchup and static discharge protection are provided on-chip. The L6116 can withstand an injection current of up to 200 mA on any pin without damage. Memory Products # 2K x 8 Static RAM (Low Power) | Storage temperature | 65°C to +150°C | |---|-----------------| | Operating ambient temperature | –55°C to +125°C | | Vcc supply voltage with respect to ground | 0.5 V to +7.0 V | | Input signal with respect to ground | | | Signal applied to high impedance output | | | Output current into low outputs | 25 mA | | Output current into low outputs | | | Mode | Temperature Range (Ambient) | Supply Voltage | |---------------------------|-----------------------------|--| | ive Operation, Commercial | 0°C to +70°C | $4.5 \text{ V} \leq \text{V} \text{CC} \leq 5.5 \text{ V}$ | | ive Operation, Military | -55°C to +125°C | $4.5 \text{ V} \leq \text{V} \text{CC} \leq 5.5 \text{ V}$ | | ta Retention, Commercial | 0°C to +70°C | $2.0 \text{ V} \leq \text{V} \text{CC} \leq 5.5 \text{ V}$ | | ata Retention, Military | -55°C to +125°C | $2.0 \text{ V} \leq \text{V} \text{CC} \leq 5.5 \text{ V}$ | | | | | i | 5 | L | | | | | |-------------|-----------------------------|----------------------------------|------|-----|-------------|------|-----|---------------------|------| | Symbol | Parameter | Test Condition | Min | Тур | Max | Min | Тур | Max | Unit | | Vон | Output High Voltage | IOH = -4.0 mA, VCC = 4.5 V | 2.4 | | | 2.4 | | | ٧ | | V OL | Output Low Voltage | IOL = 8.0 mA | - | | 0.4 | | | 0.4 | ٧ | | VIH | Input High Voltage | | 2.2 | | Vcc
+0.3 | 2.2 | | V cc
+0.3 | 1 | | VIL | Input Low Voltage | (Note 3) | -3.0 | | 0.8 | -3.0 | | 0.8 | ٧ | | lix | Input Leakage Current | GND ≤ VIN ≤ VCC | -10 | | +10 | -10 | | +10 | μА | | loz | Output Leakage Current | GND ≤ Vout ≤ Vcc, CE = Vcc | -10 | | +10 | -10 | | +10 | μА | | ICC2 | Vcc Current, TTL Inactive | (Note 7) | | 15 | 30 | | 12 | 20 | mA | | ICC3 | Vcc Current, CMOS Standby | (Note 8) | | 20 | 100 | | 10 | 30 | μА | | ICC4 | Vcc Current, Data Retention | VCC = 3.0 V (Note 9) | | 5 | 50 | | 2 | 10 | μΑ | | Cin | Input Capacitance | Ambient Temp = 25°C, Vcc = 5.0 V | | | 5 | | | 5 | pF | | COUT | Output Capacitance | Test Frequency = 1 MHz (Note 10) | | | 7 | | | 7 | pF | | | | | L6116- | | | | | | | | |--------|---------------------|----------------|--------|-----|-----|-----|-----|-----|--|------| | Symbol | Parameter | Test Condition | 35 | 25 | 20 | 15 | 12 | 10 | | Unit | | ICC1 | Vcc Current, Active | (Note 6) | 75 | 100 | 125 | 160 | 200 | 220 | | mA | ## 2K x 8 Static RAM (Low Power) ### SWITCHING CHARACTERISTICS Over Operating Range (ns) | | | L6116- | | | | | | | | | | | | | | |--------|--|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | | 3 | 5 | 25 | | 20 | | 15 | | 12 | | 10 | | | | | Symbol | Parameter | Min | Max | tavav | Read Cycle Time | 35 | | 25 | | 20 | | 15 | | 12 | | 10 | | | | | tavov | Address Valid to Output Valid (13, 14) | | 35 | | 25 | | 20 | | 15 | | 12 | | 10 | | | | taxox | Address Change to Output Change | 3 | | 3 | | 3 | | 3 | | 3 | | 3 | | | | | tcLQV | Chip Enable Low to Output Valid (13, 15) | | 35 | | 25 | | 20 | | 15 | | 12 | | 10 | | | | tCLQZ | Chip Enable Low to Output Low Z (20, 21) | 3 | | 3 | | 3 | | 3 | | 3 | | 3 | | | | | tchaz | Chip Enable High to Output High Z (20, 21) | | 15 | | 10 | | 8 | | 8 | | 5 | | 4 | | | | toLQV | Output Enable Low to Output Valid | | 15 | | 12 | | 10 | | 8 | | 6 | | 5 | | | | toLQZ | Output Enable Low to Output Low Z (20, 21) | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | | tonaz | Output Enable High to Output High Z (20, 21) | | 12 | | 10 | | 8 | | 5 | | 5 | | 4 | | | | tPU | Input Transition to Power Up (10, 19) | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | | tPD | Power Up to Power Down (10, 19) | | 35 | | 25 | | 20 | | 20 | | 20 | | 18 | | | | tCHVL. | Chip Enable High to Data Retention (10) | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | #### 2K x 8 Static RAM (Low Power) ## SWITCHING CHARACTERISTICS Over Operating Range (ns) | | | L6116- | | | | | | | | | | | | | | |--------|--|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | | 35 | | 25 | | 20 | | 15 | | 12 | | 10 | | | | | Symbol | Parameter | Min | Max | tavav | Write Cycle Time | 25 | | 20 | | 20 | | 15 | | 12 | | 10 | | | | | tCLEW | Chip Enable Low to End of Write Cycle | 25 | | 15 | | 15 | | 12 | | 10 | | 8 | | | | | tavbw | Address Valid to Beginning of Write Cycle | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | | tavew | Address Valid to End of Write Cycle | 25 | | 15 | | 15 | | 12 | | 10 | | 8 | | | | | tEWAX | End of Write Cycle to Address Change | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | | twlew | Write Enable Low to End of Write Cycle | 20 | | 15 | | 15 | | 12 | | 10 | | 8 | | | | | tDVEW | Data Valid to End of Write Cycle | 15 | | 10 | | 10 | | 7 | | 6 | | 5 | | | | | tEWDX | End of Write Cycle to Data Change | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | | | | twhoz | Write Enable High to Output Low Z (20, 21) | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | | twLQZ | Write Enable Low to Output High Z (20, 21) | | 10 | | 7 | | 7 | | 5 | | 4 | | 4 | | | #### 2K x 8 Static RAM (Low Power) #### NOTES - 1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device. - 2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values. - 3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at –0.6 V. A current in excess of 100 mA is required to reach –2 V. The device can withstand indefinite operation with inputs as low as –3 V subject only to power dissipation and bond wire fusing constraints. - 4. Duration of the output short circuit should not exceed 30 seconds. - 5. A series of normalized curves on pages 2-8 through 2-11 of this data book supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels. - 6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., CE ≤ VIL, WE ≤ VIL. Input pulse levels are 0 to 3.0 V. - 7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., CE ≥ VIH. - 8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{CE} = VCC$. Input levels are within 0.2 V of VCC or ground. - 9. Data retention operation requires that VCC never drop below 2.0 V. \overline{CE} must be \geq VCC 0.2 V. For the L6116, all other inputs must meet $\overline{VIN} \geq VCC 0.2 V$ or $\overline{VIN} \leq 0.2 V$ is required to ensure full powerdown. For the L6116 (low power version), this requirement applies only to \overline{CE} and \overline{WE} ; there are no restrictions on data and addresses. - 10. These parameters are guaranteed but not 100% tested. - 11. Test conditions assume input transition times of less than 3 ns, reference levels of 1.5 V, output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2). - 12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tavew is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time. - 13. WE is high for the read cycle. - 14. The chip is continuously selected (CE low). - 15. All address lines are valid prior-to or coincident-with the \overline{CE} transition to low. - 16. The internal write cycle of the memory is defined by the overlap of \overline{CE} low and \overline{WE} low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first. - 17. If WE goes low before or concurrent with $\overline{\text{CE}}$ going low, the output remains in a high impedance state. - 18. If \overline{CE} goes high before or concurrent with \overline{WE} going high, the output remains in a high impedance state. - 19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions: - a. Falling edge of CE. - b. Falling edge of WE (CE active). - c. Transition on any address line (CE active). - d. Transition on any data line (CE and WE active). The device automatically powers down from ICC1 to ICC2 after tro has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width. - 20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device. - 21. Transition is measured ±200 mV from steady state voltage with specified loading - in Fig. 1b. This parameter is sampled and not 100% tested. - 22. All address timings are referenced from the last valid address line to the first transitioning address line. - 23. CE or WE must be high during address transitions. - 24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used. # 2K x 8 Static RAM (Low Power) | | 24-pin — DIP (0.3' | ' wide) | 24-pin — DIP ((| 0.6" wide) | 24-pin — CERFLAT | |----------------------------|--|--|--|---|--| | | A7 [1 A6 [2 A5 [3 A4 [] 4 A3 [] 5 A2 [] 6 A1 [] 7 A0 [] 8 VO [] 9 VO 1 [] 10 VO 2 [] 11 GND [] 12 | 24 VCC
23 A8
22 A9
21 WE
20 ŌE
19 A10
18 Œ
17 VO7
16 VO6
15 VO6
14 VO4
13 VO3 | A7 | 24 VCC
23 A8
22 A9
21 WE
20 OE
19 A10
18 CE
17 VO7
16 VO6
15 VO5
14 VO4
13 VO3 | A7 == 1 | | | THE THE PARTY OF T | | | | | | ed | Plastic DIP
(P2) | CerDIP
(C1) | Plastic DIP
(P1) | CerDIP
(C4) | CerFlat
(M1) | | | 0°C to +70°C — Cor | MMERCIAL SCREENING | | | | | ns
ns
ns
ns
ns | L6116PC35* " 25* " 20* " 15* " 12* " 10* | L6116CC35* " " 25* " " 20* " " 15* " " 12* " " 10* | L6116NC35* " " 25* " " 20* " " 15* " " 12* " " 10* | L6116IC35* " " 25* " " 20* " " 15* " " 12* " " 10* | L6116MC35* " " 25* " " 20* " " 15* " " 12* " " 10* | | | -55°C to +125°C | COMMERCIAL SCREEN | NG | | | | ns
ns
ns
ns | | L6116CM35* " " 25* " " 20* " " 15* " " 12* | | L6116IM35* " " 25* " " 20* " " 15* " " 12* | L6116MM35* " " 25* " " 20* " " 15* " " 12* | | | -55°C to +125°C - | MIL-STD-883 COMPI | LIANT | | | | ns
ns
ns
ns | | L6116CMB35* " " 25* " " 20* " " 15* " " 12* | | L6116IMB35* " " 25* " " 20* " " 15* " " 12* | L6116MMB35* " " 25* " " 20* " " 15* " " 12* | ^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (i.e., L6116CMB35L). # 2K x 8 Static RAM (Low Power) | | ORDERING INFORMATION | | | |--|--|---|---| | | 24-pin — SOJ A7 | 28-pin — LCC (450 x 450) A3 5 4 3 2 11 28 27 26 WE OE A2 6 24 OE NC 7 Top 23 A10 NC 8 View 21 NC A1 9 21 NC A0 10 20 CE VO 11 12 13 14 15 16 17 18 Q Q Q Q Q Q | 32-pin — LCC (450 x 550) A6 5 4 3 2 111 32 31 30 A6 5 4 3 2 111 32 31 30 A6 6 28 A9 A4 7 27 NC A3 8 Top 26 WE A2 9 View 24 A10 A0 11 23 CE NC 12 22 VO7 VO0 13 14 15 16 17 18 19 20 Q Q Q Q Q Q Q Q | | Speed | Plastic SOJ
(.300"— W1) | Ceramic Leadless
Chip Carrier (K1) | Ceramic Leadless
Chip Carrier (K7) | | | 0°C to +70°C — COMMERCIAL SCREENING | | | | 35 ns
25 ns
20 ns
15 ns
12 ns
10 ns | L6116WC35* " " 25* " " 20* " " 15* " " 12* " " 10* | L6116KC35* " " 25* " " 20* " " 15* " " 12* " " 10* | L6116TC35* " 25* " 20* " 15* " 12* " 10* | | | -55°C to +125°C — COMMERCIAL SCREENING | | | | 35 ns
25 ns
20 ns
15 ns
12 ns | OSIMICIOIAE GOAGENING | L6116KM35* " " 25* " " 20* " " 15* " " 12* | L6116TM35* " " 25* " " 20* " " 15* " " 12* | | | -55°C to +125°C MIL-STD-883 COMPLIAN | ıπ | | | 35 ns
25 ns
20 ns
15 ns
12 ns | | L6116KMB35* | L6116TMB35* " 25* " 20* " 15* " 12* | ^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (i.e., L6116KMB35L).