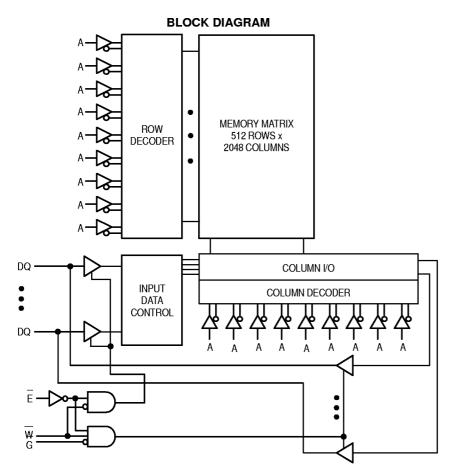
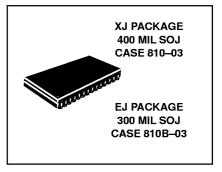
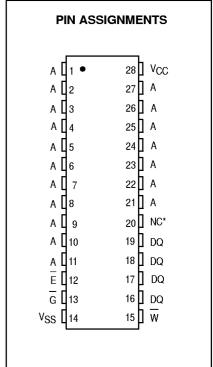
Product Preview


256K x 4 Bit Static Random Access Memory

The MCM6229BB is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits. Static design eliminates the need for external clocks or timing strobes while CMOS circuitry reduces power consumption and provides for greater reliability.


The MCM6229BB is equipped with both chip enable (E) and output enable (G) pins, allowing for greater system flexibility and eliminating bus contention problems. The MCM6229BB is available in 300 mil and 400 mil, 28 lead surface—mount


SOJ packages.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 15/17/20/25/35 ns
- Equal Address and Chip Enable Access Times
- All Inputs and Outputs are TTL Compatible and LVTTL Compatible
- Three State Outputs
- Low Power Operation: 155/150/135/130/110 mA Maximum, Active AC

MCM6229BB

PIN NAMES									
A. Address Inputs W Write Enable G Output Enable E Chip Enable DQ Data Inputs/Outputs VCC + 5 V Power Supply VSS Ground NC* No Connection									

*If not used for no connect, then do not exceed voltages of - 0.5 to V_{CC} + 0.5 V. This pin is used for manufacturing diagnostics.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice. 11/7/96

TRUTH TABLE

E	G	w	Mode I/O Pin C		Cycle	Current		
Н	Х	Х	Not Selected	High–Z	1	I _{SB1} , I _{SB2}		
L	Н	Н	Output Disabled	High–Z		ICCA		
L	L	Н	Read	D _{out}	Read	ICCA		
L	Х	L	Write	D _{in}	Write	ICCA		

H = High, L = Low, X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to V _{SS}	Vcc	- 0.5 to 7.0	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	-0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	l _{out}	± 20	mA
Power Dissipation	PD	1.0	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	ô
Storage Temperature	T _{stg}	– 55 to + 150	ô

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.5	٧
Input High Voltage	V _{IH}	2.2	V _{CC} + 0.3**	V
Input Low Voltage	V _{IL}	- 0.5*	0.8	V

 $^{^*}$ V_{II} (min) = -0.5 V dc; V_{II} (min) = -2.0 V ac (pulse width ≤ 20 ns).

DC CHARACTERISTICS AND SUPPLY CURRENTS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)		lkg(l)	_	± 1	μА
Output Leakage Current (E = V _{IH} , V _{out} = 0 to V _{CC})		llkg(O)	_	± 1	μΑ
AC Active Supply Current (I_{Out} = 0 mA, all inputs = V_{IL} or V_{IH} , V_{IL} = 0, V_{IH} \geq 3 V, cycle time \geq t _{AVAV} min, V_{CC} = max)	MCM6229BB-15: t _{AVAV} = 15 ns MCM6229BB-17: t _{AVAV} = 17 ns MCM6229BB-20: t _{AVAV} = 20 ns MCM6229BB-25: t _{AVAV} = 25 ns MCM6229BB-35: t _{AVAV} = 35 ns	ICCA	1111	155 150 135 130 110	mA
AC Standby Current (V _{CC} = max, E = V _{IH} , f = f _{max})	MCM6229BB-15: t _{AVAV} = 15 ns MCM6229BB-17: t _{AVAV} = 17 ns MCM6229BB-20: t _{AVAV} = 20 ns MCM6229BB-25: t _{AVAV} = 25 ns MCM6229BB-35: t _{AVAV} = 35 ns	ISB1		45 40 35 30 25	mA
CMOS Standby Current (E \geq V _{CC} $-$ 0.2 V, V _{in} \leq V _{SS} + or \geq V _{CC} $-$ 0.2 V, V _{CC} $=$ max, f $=$ 0 MHz)	0.2 V	I _{SB2}	_	5	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		V _{OL}	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)		Voн	2.4	_	٧

^{**} V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns).

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

	Characteristic					
Input Capacitance	All Inputs Except Cloc <u>ks a</u> nd D <u>Qs</u> E, G, and W	C _{in} C _{ck}	4 5	6 8	pF	
I/O Capacitance	DQ	C _{I/O}	5	8	pF	

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

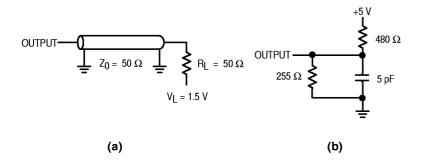
Input Pulse Levels	Output Timing Measurement Reference Level 1.5 V
Input Rise/Fall Time 2 ns	Output Load See Figure 1a
Input Timing Measurement Reference Level 1.5 V	

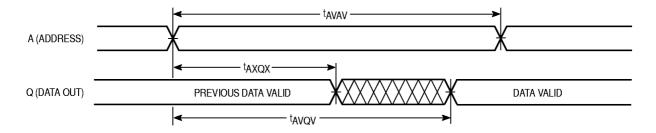
READ CYCLE TIMING (See Notes 1, 2, and 3)

		6229E	3B–15	6229E	3B-17	6229E	3B-20	6229E	3B-25	6229E	3B-35		
Parameter	Symbol	Min	Max	Unit	Notes								
Read Cycle Time	†AVAV	15	_	17	_	20	_	25	_	35	_	ns	3
Address Access Time	^t AVQV	_	15	_	17	_	20	_	25	_	35	ns	
Enable Access Time	^t ELQV	_	15	_	17	_	20	_	25	_	35	ns	4
Output Enable Access Time	^t GLQV	_	6	_	7	_	7	_	8	_	8	ns	
Output Hold from Address Change	[†] AXQX	3	_	3	_	3	_	3	_	3	_	ns	
Enable Low to Output Active	[†] ELQX	5	_	5	_	5	_	5	_	5	_	ns	5, 6, 7
Output Enable Low to Output Active	[†] GLQX	0	_	0	_	0	_	0	_	0	_	ns	5, 6, 7
Enable High to Output High-Z	^t EHQZ	0	6	0	7	0	7	0	8	0	8	ns	5, 6, 7
Output Enable High to Output High–Z	^t GHQZ	0	6	0	7	0	7	0	8	0	8	ns	5, 6, 7

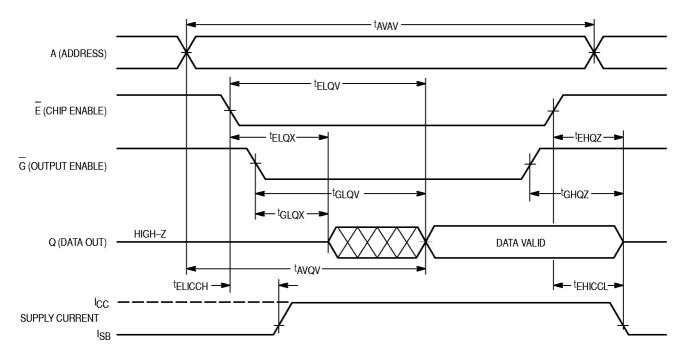
NOTES:

- 1. W is high for read cycle.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All timings are referenced from the last valid address to the first transitioning address.
- 4. Addresses valid prior to or coincident with E going low.
- 5. At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GLQX} min, both for a given device and from device to device.
- 6. Transition is measured \pm 500 mV from steady–state voltage with load of Figure 1b.
- 7. This parameter is sampled and not 100% tested.
- 8. Device is continuously selected (E \leq V $_{|L},$ G \leq V $_{|L}).$




Figure 1. AC Test Loads

TIMING LIMITS

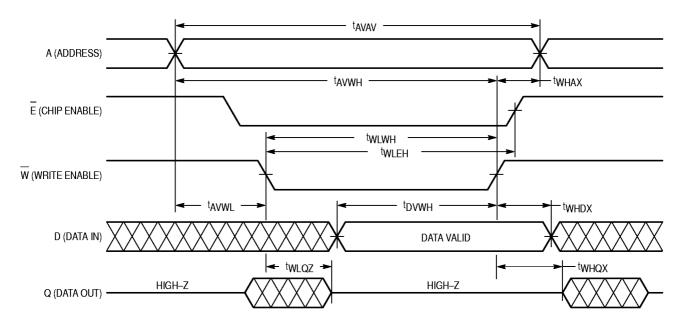

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time. On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

MOTOROLA FAST SRAM MCM6229BB

READ CYCLE 1 (See Notes 1, 2, 3, and 9)

READ CYCLE 2 (See Notes 3 and 5)

MCM6229BB MOTOROLA FAST SRAM


WRITE CYCLE 1 (W Controlled, See Notes 1, 2, 3, and 4)

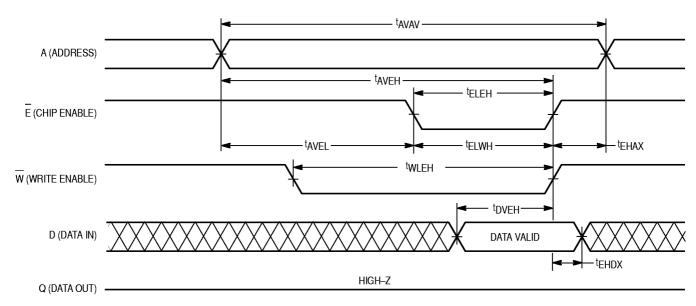
		6229E	3B–15	6229E	3B-17	6229E	3B-20	6229E	3B-25	6229E	3B-35		
Parameter	Symbol	Min	Max	Unit	Notes								
Write Cycle Time	[†] AVAV	15	_	17	_	20	_	25	_	35	_	ns	4
Address Setup Time	[†] AVWL	0	_	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	^t AVWH	12	_	14	_	15	_	17	_	20	_	ns	
Write Pulse Width	tWLWH, tWLEH	12	_	14	_	15	_	17	_	20	_	ns	
Data Valid to End of Write	^t DVWH	7	_	8	_	9	_	10	_	11	_	ns	
Data Hold Time	tWHDX	0	_	0	_	0	_	0	_	0	_	ns	
Write Low to Data High-Z	tWLQZ	_	6	_	7	_	7	_	8	_	8	ns	5, 6, 7
Write High to Output Active	twhqx	5	_	5	_	5	_	5	_	5	_	ns	5, 6, 7
Write Recovery Time	tWHAX	0	_	0	_	0	_	0	_	0	_	ns	

NOTES:

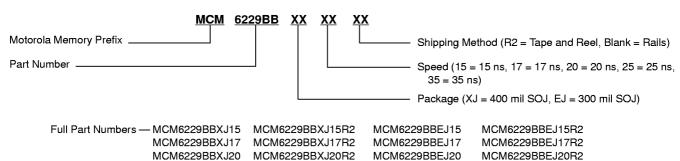
- 1. A write occurs during the overlap of E low and W low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.
- 4. All timings are referenced from the last valid address to the first transitioning address.
- 5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1b.
- 6. This parameter is sampled and not 100% tested.
- 7. At any given voltage and temperature, twLoz max is less than twHox min both for a given device and from device to device.

WRITE CYCLE 1 (W Controlled See Notes 1, 2, 3, and 4)

MOTOROLA FAST SRAM MCM6229BB 5


WRITE CYCLE 2 (E Controlled, See Notes 1, 2, and 3)

		6229E	3B–15	6229E	3B-17	6229E	3B-20	6229E	3B-25	6229E	3B-35		
Parameter	Symbol	Min	Max	Unit	Notes								
Write Cycle Time	[†] AVAV	15	_	17	_	20	_	25	_	35	_	ns	4
Address Setup Time	[†] AVEL	0	_	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	[†] AVEH	12	_	14	_	15	_	17	_	20	_	ns	
Enable to End of Write	^t ELEH, ^t ELWH	12	_	14	_	15	_	17	_	20	_	ns	5, 6
Write Pulse Width	tWLEH	12	_	14	_	15	_	17	_	20	_	ns	
Data Valid to End of Write	^t DVEH	7	_	8	_	9	_	10	_	11	_	ns	
Data Hold Time	tEHDX	0	_	0	_	0	_	0	_	0	_	ns	
Write Recovery Time	t _{EHAX}	0	_	0	_	0	_	0	_	0	_	ns	


NOTES:

- 1. A write occurs during the overlap of E low and W low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.
- 4. All timings are referenced from the last valid address to the first transitioning address.
- 5. If E goes low coincident with or after W goes low, the output will remain in a high-impedance state.
- 6. If E goes high coincident with or before W goes high, the output will remain in a high-impedance state.

WRITE CYCLE 2 (E Controlled See Notes 1, 2, 3, and 4)

ORDERING INFORMATION (Order by Full Part Number)

MCM6229BB MOTOROLA FAST SRAM

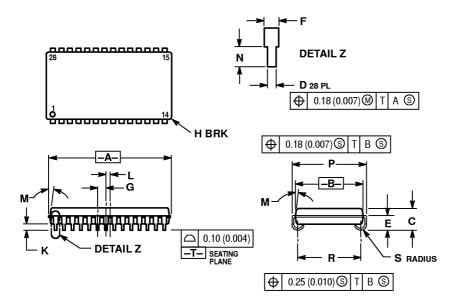
MCM6229BBEJ25

MCM6229BBEJ35

MCM6229BBEJ25R2

MCM6229BBEJ35R2

MCM6229BBXJ25R2


MCM6229BBXJ35R2

MCM6229BBXJ25

MCM6229BBXJ35

PACKAGE DIMENSIONS

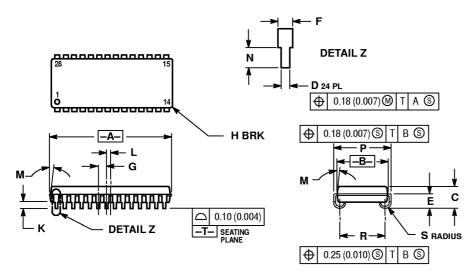
28 LEAD 400 MIL SOJ CASE 810-03

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.


 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION, MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION R TO BE DETERMINED AT DATUM

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.720	0.730	18.29	18.54		
В	0.395	0.405	10.04	10.28		
С	0.128	0.148	3.26	3.75		
D	0.015	0.020	0.39	0.50		
E	0.088	0.098	2.24	2.48		
F	0.026	0.032	0.67	0.81		
G	0.050	BSC	1.27 BSC			
Н	l	0.020	l	0.50		
K	0.035	0.045	0.89	1.14		
L	0.025	BSC	0.64	BSC		
M	0 °	5°	0 °	5°		
N	0.030	0.045	0.76	1.14		
P	0.435	0.445	11.05	11.30		
R	0.360	0.380	9.15	9.65		
S	0.030	0.040	0.77	1.01		

MOTOROLA FAST SRAM MCM6229BB

28 LEAD 300 MIL SOJ CASE 810B-03

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 VIA EM 1983
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION R TO BE DETERMINED AT DATUM

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.720	0.730	18.29	18.54		
В	0.295	0.305	7.50	7.74		
C	0.128	0.148	3.26	3.75		
D	0.015	0.020	0.39	0.50		
Е	0.088	0.098	2.24	2.48		
F	0.026	0.032	0.67	0.81		
G	0.050	BSC	1.27 BSC			
Ŧ		0.020	l	0.50		
K	0.035	0.045	0.89	1.14		
L	0.025	BSC	0.64	BSC		
M	0 0	10 °	0 °	10 °		
N	0.030	0.045	0.76	1.14		
Ρ	0.330	0.340	8.38	8.64		
R	0.260	0.270	6.60	6.86		
S	0.030	0.040	0.77	1.01		

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81–3–5487–8488

- TOUCHTONE 602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Mfax is a trademark of Motorola, Inc.

INTERNET: http://motorola.com/sps

MCM6229BB/D