18Mb SYNCBURST™ SRAM MT58L1MY18P, MT58V1MV18P, MT58L512Y32P, MT58V512V32P, MT58L512Y36P, MT58V512V36P 3.3V VDD, 3.3V or 2.5V I/O; 2.5V VDD, 2.5V I/O, Pipelined, Single-Cycle Deselect #### **FEATURES** - Fast clock and OE# access times - Single +3.3V ±0.165V or +2.5V ±0.125V power supply (VDD) - Separate +3.3V or +2.5V isolated output buffer supply (VDDO) - SNOOZE MODE for reduced-power standby - Single-cycle deselect (Pentium® BSRAM-compatible) - Common data inputs and data outputs - Individual BYTE WRITE control and GLOBAL WRITE - Three chip enables for simple depth expansion and address pipelining - Clock-controlled and registered addresses, data I/Os, and control signals - Internally self-timed WRITE cycle - Burst control (interleaved or linear burst) - Automatic power-down for portable applications - · Low capacitive bus loading - x18, x32, and x36 versions available | OPTIONS | MARKING | |------------------------------------|--------------| | • Timing (Access/Cycle/MHz) | | | 2.5V VDD, 2.5V I/O | | | 3.5ns/6ns/166 MHz | -6 | | 4.0ns/7.5ns/133 MHz | -7.5 | | 5ns/10ns/100 MHz | -10 | | 3.3V Vdd, 3.3V or 2.5V I/O | | | 4.0ns/7.5ns/133 MHz | -7.5 | | 5ns/10ns/100 MHz | -10 | | Configurations | | | 3.3V VDD, 3.3V or 2.5V I/O | | | 1 Meg x 18 | MT58L1MY18P | | 512K x 32 | MT58L512Y32P | | 512K x 36 | MT58L512Y36P | | 2.5V Vdd, 2.5V I/O | | | 1 Meg x 18 | MT58V1MV18P | | 512K x 32 | MT58V512V32P | | 512K x 36 | MT58V512V36P | | Packages | | | 100-pin TQFP (3-chip enable) | T | | 165-pin FBGA | F* | | 119-pin BGA | В | | • Operating Temperature Range | | | Commercial (0°C to +70°C) | None | Part Number Example: MT58L1MY18PT-6 # 100-Pin TQFP¹ TO THE PROPERTY OF THE PARTY 165-Pin FBGA **119-Pin BGA²** NOTE: 1. JEDEC-standard MS-026 BHA (LQFP). 2. JEDEC-standard MS-028 BHA (PBGA). ^{*} A Part Marking Guide for the FBGA devices can be found on Micron's Web site—http://www.micron.com/support/index.html. # FUNCTIONAL BLOCK DIAGRAM 1 MEG x 18 ### FUNCTIONAL BLOCK DIAGRAM 512K x 32/36 **NOTE:** Functional block diagrams illustrate simplified device operation. See truth table, pin descriptions, and timing diagrams for detailed information. #### **GENERAL DESCRIPTION** The Micron[®] SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs that are fabricated using an advanced CMOS process. Micron's 18Mb SyncBurst SRAMs integrate a 1 Meg x 18, 512K x 32, or 512K x 36 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single-clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE#), two additional chip enables for easy depth expansion (CE2, CE2#), burst control inputs (ADSC#, ADSP#, ADV#), byte write enables (BWx#), and global write (GW#). Asynchronous inputs include the output enable (OE#), clock (CLK) and snooze enable (ZZ). There is also a burst mode input (MODE) that selects between interleaved and linear burst modes. The data-out (Q), enabled by OE#, is also asynchronous. WRITE cycles can be from one to two bytes wide (x18) or from one to four bytes wide (x32/x36), as controlled by the write control inputs. Burst operation can be initiated with either address status processor (ADSP#) or address status controller (ADSC#) inputs. Subsequent burst addresses can be internally generated as controlled by the burst advance input (ADV#). Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. During WRITE cycles on the x18 device, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb. During WRITE cycles on the x32 and x36 devices, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins and DQPc; BWd# controls DQd pins and DQPd. GW# LOW causes all bytes to be written. Parity bits are only available on the x18 and x36 versions. This device incorporates a single-cycle deselect feature during READ cycles. If the device is immediately deselected after a READ cycle, the output bus goes to a High-Z state ^tKQHZ nanoseconds after the rising edge of clock. The device is ideally suited for Pentium and PowerPC pipelined systems and systems that benefit from a very wide, high-speed data bus. The device is also ideal in generic 16-, 18-, 32-, 36-, 64-, and 72-bit-wide applications. Please refer to Micron's Web site (<u>www.micron.com/</u> <u>sram</u>) for the latest data sheet. #### **DUAL VOLTAGE I/O** The 3.3V VDD device is tested for 3.3V and 2.5V I/O function. The 2.5V VDD device is tested for only 2.5V I/O function. ### **TQFP PIN ASSIGNMENT TABLE** | PIN # | x18 | x32 | x36 | | | | |--------|------|-----------|-------------------|--|--|--| | 1 | NC | NF | DQPc ¹ | | | | | 2 | NC | DQc | DQc | | | | | 3 | NC | DQc | DQc | | | | | 4 | | VddQ | | | | | | 5
6 | | Vss | | | | | | 6 | NC | DQc | DQc | | | | | 7 | NC | DQc | DQc | | | | | 8 | DQb | DQc | DQc | | | | | 9 | DQb | DQc | DQc | | | | | 10 | | Vss | | | | | | 11 | | $V_{DD}Q$ | | | | | | 12 | DQb | DQc | DQc | | | | | 13 | DQb | DQc | DQc | | | | | 14 | NC | | | | | | | 15 | | V_{DD} | | | | | | 16 | | NC | | | | | | 17 | | Vss | | | | | | 18 | DQb | DQd | DQd | | | | | 19 | DQb | DQd | DQd | | | | | 20 | | VddQ | | | | | | 21 | Vss | | | | | | | 22 | DQb | DQd | DQd | | | | | 23 | DQb | DQd | DQd | | | | | 24 | DQPb | DQd | DQd | | | | | 25 | NC | DQd | DQd | | | | | PIN# | x18 | x32 | x36 | | | | | |----------------|-----|--------|-------------------|--|--|--|--| | | | Vss | 7.50 | | | | | | 26
27 | | VddQ | | | | | | | 28
29 | NC | DQd | DQd | | | | | | 29 | NC | DQd | DOd | | | | | | 30 | NC | NF | DQPd ¹ | | | | | | 31 | MC | DE (LB | O#) | | | | | | 32
33
34 | | SA | | | | | | | 33 | | SA | | | | | | | 34 | | SA | | | | | | | 35 | | SA | | | | | | | 36 | | SA1 | | | | | | | 37 | SA0 | | | | | | | | 38 | DNU | | | | | | | | 39 | DNU | | | | | | | | 40 | Vss | | | | | | | | 41 | VDD | | | | | | | | 42 | | SA | | | | | | | 43 | | SA | | | | | | | 44 | | SA | | | | | | | 45 | | SA | | | | | | | 46 | SA | | | | | | | | 47 | SA | | | | | | | | 48 | | SA | | | | | | | 49 | | SA | | | | | | | 50 | | SA | | | | | | | PIN # | x18 | x32 | x36 | | | | | | |-------|------|-----------------|-------------------|--|--|--|--|--| | 51 | NC | NF | DQPa ¹ | | | | | | | 52 | NC | DQa | DQa | | | | | | | 53 | NC | DQa | DQa | | | | | | | 54 | | VddQ | | | | | | | | 55 | | Vss | | | | | | | | 56 | NC | DQa | DQa | | | | | | | 57 | NC | DQa | DQa | | | | | | | 58 | | DQa | | | | | | | | 59 | | DQa | | | | | | | | 60 | | Vss | | | | | | | | 61 | | $V_{DD}Q$ | | | | | | | | 62 | | DQa | | | | | | | | 63 | DQa | | | | | | | | | 64 | ZZ | | | | | | | | | 65 | | V _{DD} | | | | | | | | 66 | | NC | | | | | | | | 67 | | Vss | | | | | | | | 68 | DQa | DQb | DQb | | | | | | | 69 | DQa | DQb | DQb | | | | | | | 70 | | $V_{DD}Q$ | | | | | | | | 71 | Vss | | | | | | | | | 72 | DQa | DQa DQb DQb | | | | | | | | 73 | DQa | DQb | DQb | | | | | | | 74 | DQPa | DQb | DQb | | | | | | | 75 | NC | DQb | DQb | | | | | | | PIN # | x18 x32 x36 | | | | | | | |-------|-------------|----------|-------------------|--|--|--|--| | 76 | Vss | | | | | | | | 77 | | VDDQ | | | | | | | 78 | NC | DQb | DQb | | | | | | 79 | NC | DQb | DQb | | | | | | 80 | SA | NF | DQPb ¹ | | | | | | 81 | | SA | | | | | | | 82 | | SA | | | | | | | 83 | | ADV# | | | | | | | 84 | | ADSP# | | | | | | | 85 | | ADSC# | | | | | | | 86 | (| DE# (G# |) | | | | | | 87 | | BWE# | | | | | | | 88 | | GW# | | | | | | | 89 | | CLK | | | | | | | 90 | | Vss | | | | | | | 91 | | V_{DD} | | | | | | | 92 | | CE2# | | | | | | | 93 | | BWa# | | | | | | | 94 | | BWb# | | | | | | | 95 | NC | BWc# | BWc# | | | | | | 96 | NC | BWd# | BWd# | | | | | | 97 | CE2 | | | | | | | | 98 | CE# | | | | | | | | 99 | | SA | | | | | | | 100 | | SA | | | | | | NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version. ### PIN ASSIGNMENT (TOP VIEW) 100-PIN TQFP, 3-CHIP ENABLE NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version. # **TQFP PIN DESCRIPTIONS** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |--|---|------------------------------|-------|---| | 37
36
32-35, 42-50,
80-82, 99,
100 | 37
36
32-35, 42-50,
81, 82, 99,
100 | SA0
SA1
SA | Input | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. | | 93
94
-
- | 93
94
95
96 | BWa#
BWb#
BWc#
BWd# | Input | Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. For the x18 version, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb. For the x32 and x36 versions, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins and DQPc; BWd# controls DQd pins and DQPd. Parity is only available on the x18 and x36 versions. | | 87 | 87 | BWE# | Input | Byte Write Enable: This active LOW input permits
BYTE WRITE operations and must meet the setup and hold times around the rising edge of CLK. | | 88 | 88 | GW# | Input | Global Write: This active LOW input allows a full 18-, 32-, or 36-bit WRITE to occur independent of the BWE# and BWx# lines and must meet the setup and hold times around the rising edge of CLK. | | 89 | 89 | CLK | Input | Clock: This signal registers the address, data, chip enable, byte write enables, and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. | | 98 | 98 | CE# | Input | Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the internal use of ADSP#. CE# is sampled only when a new external address is loaded. | | 92 | 92 | CE2# | Input | Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only when a new external address is loaded. | | 64 | 64 | ZZ | Input | Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When ZZ is active, all other inputs are ignored. This pin has an internal pull-down and can be floating. | | 97 | 97 | CE2 | Input | Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled only when a new external address is loaded. | | 86 | 86 | OE#
(G#) | Input | Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G# is the JEDEC-standard term for OE#. | | 83 | 83 | ADV# | Input | Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). To ensure use of correct address during a WRITE cycle, ADV# must be HIGH at the rising edge of the first clock after an ADSP# cycle is initiated. | (continued on next page) # **TQFP PIN DESCRIPTIONS (continued)** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |--|--|--|------------------|---| | 84 | 84 | ADSP# | Input | Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC#, but dependent upon CE#, CE2, and CE2#. ADSP# is ignored if CE# is HIGH. Powerdown state is entered if CE2 is LOW or CE2# is HIGH. | | 85 | 85 | ADSC# | Input | Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if CE# is LOW. ADSC# is also used to place the chip into power-down state when CE# is HIGH. | | 31 | 31 | MODE
(LBO#) | Input | Mode: This input selects the burst sequence. A LOW on this pin selects "linear burst." NC or HIGH on this pin selects "interleaved burst." Do not alter input state while device is operating. LBO# is the JEDEC-standard term for MODE. | | (a) 58, 59,
62, 63, 68, 69,
72, 73
(b) 8, 9, 12,
13, 18, 19, 22,
23 | (b) 68, 69
72-75, 78, 79
(c) 2, 3, 6-9,
12, 13
(d) 18, 19, | DQa DQb DQc DQd | Input/
Output | SRAM Data I/Os: For the x18 version, Byte "a" is associated with DQa pins; Byte "b" is associated with DQb pins. For the x32 and x36 versions, Byte "a" is associated with DQa pins; Byte "b" is associated with DQb pins; Byte "c" is associated with DQc pins; Byte "d" is associated with DQd pins. Input data must meet setup and hold times around the rising edge of CLK. | | 74
24
-
- | 51
80
1
30 | NF/DQPa
NF/DQPb
NF/DQPc
NF/DQPd | NF/
I/O | No Function/Parity Data I/Os: On the x32 version, these pins are no function (NF). On the x18 version, Byte "a" parity is DQPa; Byte "b" parity is DQPb. On the x36 version, Byte "a" parity is DQPa; Byte "b" parity is DQPb; Byte "c" parity is DQPc; Byte "d" parity is DQPd. No function pins are internally connected to the die and have the capacitance of an input pin. It is allowable to leave these pins unconnected or driven by signals. | | 15, 41, 65,
91 | 15, 41, 65,
91 | V _{DD} | Supply | Power Supply: See DC Electrical Characteristics and Operating Conditions for range. | | 4, 11, 20, 27, 54, 61, 70, 77 | 4, 11, 20, 27,
54, 61, 70, 77 | VddQ | Supply | Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for range. | | 5, 10, 17, 21,
26, 40, 55, 60,
67, 71, 76, 90 | 5, 10, 17, 21,
26, 40, 55, 60,
67, 71, 76, 90 | Vss | Supply | Ground: GND. | | 38, 39 | 38, 39 | DNU | _ | Do Not Use: These signals may either be unconnected or wired to GND to improve package heat dissipation. | | 1-3, 6, 7, 14,
16, 25, 28-30,
51-53, 56, 57,
66, 75, 78, 79,
95, 96 | 14, 16, 66 | NC | - | No Connect: These signals are not internally connected and may be connected to ground to improve package heat dissipation. | ### PIN LAYOUT (TOP VIEW) 165-PIN FBGA **x18** x32/x36 10 11 1 3 1 2 3 10 11 BWb# CE# NC BWE# ADSC# ADV# CE2# CE# SA NC BWc# BWb# CE2# BWE# ADSC# ADV# SA NC В CLK OE# (G#) ADSP# CE2 NC BWd# BWa# CLK GW# OE# (G#) ADSP# SA NC c c NC NC VF/DQPc¹ Vss NF/DQPb VDDQ Vss VDDQ Vss Vss Vss D D DQb VDDQ VDDQ NC Ε Ε DQb NC VDDQ Vss VDD VDDQ NC DQb Vss Vss NC VDDQ Vdd VDD VDDQ NC DQc VDDQ DQb DOb G G NC DQb VDDQ Vss Vss VDDQ NC VDD Vss VDD DQc VDDQ DQb DQc VDD VDD VDDQ DQb н Vss VDD VDD Vss NC Vss Vss VDD NC NC VDD Vss NC VDD Vss Vss VDD NC NC J VDD NC VDDQ VDDQ Vss DQd DQd VDDQ VDD VDDQ DQa Κ VDDQVDD VDDQ VDDQ L DQb $\mathsf{V}\mathsf{D}\mathsf{D}\mathsf{Q}$ VDD Vss VDD VDDQ DQd DQd VDDQVDD VDDQ DQa М м М DQb NC $\mathsf{V}\mathsf{D}\mathsf{D}\mathsf{Q}$ VDD Vss Vss Vss VDD VDDQDQa DOd $\mathsf{V}\mathsf{D}\mathsf{D}\mathsf{Q}$ VDD Vss Vss VDD VDDQ DQa DQa Ν NC VDDQ VDDQ **DQPb** Vss IF/DQPd¹ NC VDDQ Vss NC Vss VDDQ NC NF/DQPa TD1 TD1 SA1 NC NC TD0 NC TD0 R MODE NC TMS MODE (LBO#) (LBO#) **TOP VIEW** **TOP VIEW** ^{*}No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version. ### **FBGA PIN DESCRIPTIONS** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |--|------------------------------|------------------------------|-------|---| | 6R
6P
2A, 2B, 3P,
3R, 4P, 4R, 6N,
8P, 8R, 9P, 9R,
10A, 10B, 10P,
10R, 11A, 11P,
11R | 8P, 8R, 9P,
9R, 10A, 10B, | SA0
SA1
SA | Input | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. | | 5B
4A
-
- | 5B
5A
4A
4B | BWa#
BWb#
BWc#
BWd# | Input | Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. For the x18 version, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb. For the x32 and x36 versions, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins and DQPc; BWd# controls DQd pins and DQPd. Parity is only available on the x18 and x36 versions. | | 7A | 7A | BWE# | Input | Byte Write Enable: This active LOW input permits BYTE WRITE operations and must meet the setup and hold times around the rising edge of CLK. | | 7B | 7B | GW# | Input | Global Write: This active LOW input allows a full 18-, 32-, or 36-bit WRITE to occur independent of the BWE# and BWx# lines and must meet the setup and hold times around the rising edge of CLK. | | 6B | 6B | CLK | Input | Clock: This signal registers the address, data, chip enable, byte write enables, and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. | | 3A | 3A | CE# | Input | Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the internal use of ADSP#. CE# is sampled only when a new external address is loaded. | | 6A | 6A | CE2# | Input | Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only when a new external address is loaded. | | 11H | 11H | ZZ | Input | Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When ZZ is active, all other inputs are ignored. | | 3B | 3B | CE2 | Input | Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled only when a new external address is loaded. | | 8B | 8B | OE#(G#) | Input | Output Enable: This active LOW, asynchronous input enables the data I/O output
drivers. | (continued on next page) # **FBGA PIN DESCRIPTIONS (continued)** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |--|--|--|------------------|--| | 9A | 9A | ADV# | Input | Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on ADV# effectively causes wait states to be generated (no address advance). To ensure use of correct address during a WRITE cycle, ADV# must be HIGH at the rising edge of the first clock after an ADSP# cycle is initiated. | | 9В | 9В | ADSP# | Input | Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC#, but dependent upon CE#, CE2, and CE2#. ADSP# is ignored if CE# is HIGH. Powerdown state is entered if CE2 is LOW or CE2# is HIGH. | | 8A | 8A | ADSC# | Input | Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if CE# is LOW. ADSC# is also used to place the chip into power-down state when CE# is HIGH. | | 1R | 1R | MODE
(LB0#) | Input | Mode: This input selects the burst sequence. A LOW on this input selects "linear burst." NC or HIGH on this input selects "interleaved burst." Do not alter input state while device is operating. | | 5R
5P
7R | 5R
5P
7R | TMS
TDI
TCK | Input | IEEE 1149.1 test inputs: JEDEC-standard 2.5V I/O levels. These pins may be left not connected if the JTAG function is not used in the circuit. | | (a) 10J, 10K,
10L, 10M, 11D,
11E, 11F, 11G
(b) 1J, 1K,
1L, 1M, 2D,
2E, 2F, 2G | (a) 10J, 10K,
10L, 10M, 11J,
11K, 11L, 11M
(b) 10D, 10E,
10F, 10G, 11D,
11E, 11F, 11G
(c) 1D, 1E,
1F, 1G, 2D,
2E, 2F, 2G
(d) 1J, 1K, 1L,
1M, 2J, 2K,
2L, 2M | DQb | Input/
Output | SRAM Data I/Os: For the x18 version, Byte "a" is associated with DQa pins; Byte "b" is associated with DQb pins. For the x32 and x36 versions, Byte "a" is associated with DQa pins; Byte "b" is associated with DQb pins; Byte "c" is associated with DQc pins; Byte "d" is associated with DQd pins. Input data must meet setup and hold times around the rising edge of CLK. | | -
-
- | 11N
11C
1C
1N | NF/DQPa
NF/DQPb
NF/DQPc
NF/DQPd | NF/
I/O | No Function/Parity Data I/Os: On the x32 version, these are no function (NF). On the x18 version, Byte "a" parity is DQPa; Byte "b" parity is DQPb. On the x36 version, Byte "a" parity is DQPa; Byte "b" parity is DQPb; Byte "c" parity is DQPc; Byte "d" parity is DQPd. No function pins are internally connected to the die and have the capacitance of an input pin. It is allowable to leave these pins unconnected or driven by signals. | | 7P | 7P | TDO | Output | IEEE 1149.1 test outputs: JEDEC-standard 2.5V I/O level. | (continued on next page) # **FBGA PIN DESCRIPTIONS (continued)** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |---|--|--------|--------|--| | 1H, 4D, 4E, 4F,
4G, 4H, 4J,
4K, 4L, 4M,
8D, 8E, 8F,
8G, 8H, 8J,
8K, 8L, 8M | 1H, 4D, 4E, 4F,
4G, 4H, 4J,
4K, 4L, 4M,
8D, 8E, 8F,
8G, 8H, 8J,
8K, 8L, 8M | Vod | Supply | Power Supply: See DC Electrical Characteristics and Operating Conditions for range. | | 3C, 3D, 3E,
3F, 3G, 3J,
3K, 3L, 3M,
3N, 9C, 9D,
9E, 9F, 9G,
9J, 9K, 9L,
9M, 9N | 3C, 3D, 3E,
3F, 3G, 3J,
3K, 3L, 3M,
3N, 9C, 9D,
9E, 9F, 9G,
9J, 9K, 9L,
9M, 9N | VddQ | Supply | Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for range. | | 2H, 4C, 4N, 5C,
5D, 5E 5F,
5G, 5H, 5J,
5K, 5L, 5M,
6C, 6D, 6E, 6F,
6G, 6H, 6J,
6K, 6L, 6M,
7C, 7D, 7E,
7F, 7G, 7H,
7J, 7K, 7L,
7M, 7N, 8C, 8N | 5D, 5E 5F,
5G, 5H, 5J,
5K, 5L, 5M,
6C, 6D, 6E, 6F,
6G, 6H, 6J,
6K, 6L, 6M,
7C, 7D, 7E,
7F, 7G, 7H,
7J, 7K, 7L, | Vss | Supply | Ground: GND. | | 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1P, 2C, 2J, 2K, 2L, 2M, 2N, 2P, 2R, 3H, 4B, 5A, 5N, 9H, 10C, 10E, 10F, 10G, 10H, 10N, 11B, 11J, 11K, 11L, 11M, 11N | 1A, 1B, 1P,
2C, 2N,
2P, 2R, 3H,
5N, 9H,
10C, 10H,
10N, 11A,
11B | NC | _ | No Connect: These signals are not internally connected and may be connected to ground to improve package heat dissipation. | ### PIN LAYOUT (TOP VIEW) 119-PIN BGA NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version. ### **BGA PIN DESCRIPTIONS** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |---|---|------------------------------|-------|---| | 4P
4N
2A, 3A, 5A,
6A, 2B, 3B,
5B, 6B, 2C,
3C, 5C, 6C,
2R, 6R, 2T,
3T, 5T, 6T | 4P
4N
2A, 3A, 5A,
6A, 2B, 3B,
5B, 6B, 2C,
3C, 5C, 6C,
3T, 4T, 5T,
2R, 6R | SA0
SA1
SA | Input | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. | | 5L
3G
–
– | 5L
5G
3G
3L | BWa#
BWb#
BWc#
BWd# | Input | Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. For the x18 version, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb. For the x32 and x36 versions, BWa# controls DQa pins and DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins and DQPc; BWd# controls DQd pins and DQPd. Parity is only available on the x18 and x36 versions. | | 4M | 4M | BWE# | Input | Byte Write Enable: This active LOW input permits BYTE WRITE operations and must meet the setup and hold times around the rising edge of CLK. | | 4H | 4H | GW# | Input | Global Write: This active LOW input allows a full 18-, 32-, or 36-bit WRITE to occur independent of the BWE# and BWx# lines and must meet the setup and hold times around the rising edge of CLK. | | 4K | 4K | CLK | Input | Clock: This signal registers the address, data, chip enable, byte write enables, and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. | | 4E | 4E | CE# | Input | Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the internal use of ADSP#. CE# is sampled only when a new external address is loaded. | | 7T | 7Т | ZZ | Input | Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When active, all other inputs are ignored. | | 4F | 4F | OE#
(G#) | Input | Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G# is the JEDEC-standard term for OE#. | | 4G | 4G | ADV# | Input | Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on ADV# effectively causes wait states to be generated (no address advance). To ensure use of correct address during a WRITE cycle, ADV# must be HIGH at the rising edge of the first clock after an ADSP# cycle is initiated. | (continued on next page) # **BGA PIN DESCRIPTIONS (continued)** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |--|--|--|------------------
--| | 4A | 4A | ADSP# | Input | Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC#, but dependent upon CE#, CE2, and CE2#. ADSP# is ignored if CE# is HIGH. Powerdown state is entered if CE2 is LOW or CE2# is HIGH. | | 4B | 4B | ADSC# | Input | Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if CE# is LOW. ADSC# is also used to place the chip into power-down state when CE# is HIGH. | | 3R | 3R | MODE
(LBO#) | Input | Mode: This input selects the burst sequence. A LOW on MODE selects "linear burst." NC or HIGH on this input selects "interleaved burst." Do not alter input state while device is operating. LBO# is the JEDEC-standard term for MODE. | | 2U
3U
4U | 2U
3U
4U | TMS
TDI
TCK | Input | IEEE 1149.1 test inputs: JEDEC-standard 2.5V I/O levels. These pins may be left not connected if the JTAG function is not used in the circuit. | | (a) 6F, 6H, 6L,
6N, 7E, 7G,
7K, 7P
(b) 1D, 1H,
1L, 1N, 2E,
2G, 2K, 2M | (a) 6K, 6L,
6M, 6N, 7K,
7L, 7N, 7P
(b) 6E, 6F,
6G, 6H, 7D,
7E, 7G, 7H
(c) 1D, 1E,
1G, 1H, 2E,
2F, 2G, 2H
(d) 1K, 1L,
1N, 1P, 2K,
2L, 2M, 2N | DQa
DQb
DQc
DQd | Input/
Output | SRAM Data I/Os: For the x18 version, Byte "a" is associated with DQa pins; Byte "b" is associated with DQb pins. For the x32 and x36 versions, Byte "a" is associated with DQa pins; Byte "b" is associated with DQb pins; Byte "c" is associated with DQc pins; Byte "d" is associated with DQd pins. Input data must meet setup and hold times around the rising edge of CLK. | | 5U | 5U | TDO | Output | IEEE 1149.1 test outputs: JEDEC-standard 2.5V I/O level. | | 6D
2P
–
– | 6P
6D
2D
2P | NF/DQPa
NF/DQPb
NF/DQPc
NF/DQPd | NF/
I/O | No Function/Parity Data I/Os: On the x32 version, these are no function (NF). On the x18 version, Byte "a" parity is DQPa; Byte "b" parity is DQPb. On the x36 version, Byte "a" parity is DQPa; Byte "b" parity is DQPb; Byte "c" parity is DQPc; Byte "d" parity is DQPd. No function pins are internally connected to the die and have the capacitance of an input pin. It is allowable to leave these pins unconnected or driven by signals. | | 2J, 4C, 4J,
4R, 5R, 6J | 2J, 4C, 4J,
4R, 5R, 6J | VDD | Supply | Power Supply: See DC Electrical Characteristics and Operating Conditions for range. | | 1A, 1F, 1J,
1M, 1U, 7A,
7F, 7J, 7M,
7U | 1A, 1F, 1J,
1M, 1U, 7A,
7F, 7J, 7M,
7U | VddQ | Supply | Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for range. | (continued on next page) # **BGA PIN DESCRIPTIONS (continued)** | x18 | x32/x36 | SYMBOL | TYPE | DESCRIPTION | |---|--|--------|--------|--| | 3D, 3E, 3F, | 3D, 3E, 3F, | Vss | Supply | Ground: GND. | | 3H, 3K, 3L, | 3H, 3K, 3M, | | | | | 3M, 3N, 3P, | 3N, 3P, 5D, | | | | | 5D, 5E, 5F, | 5E, 5F, 5H, | | | | | 5G, 5H, 5K, | 5K, 5M, 5N, | | | | | 5M, 5N, 5P | 5P | | | | | 1B, 1C, 1E,
1G, 1K, 1P,
1R, 1T, 2D,
2F, 2H, 2L,
2N, 3J, 4D,
4L, 4T, 5J,
6E, 6G, 6K, | 1B, 1C, 1R,
1T, 2T, 3J,
4D, 4L, 5J,
6T, 6U, 7B,
7C, 7R | NC | - | No Connect: These signals are not internally connected and may be connected to ground to improve package heat dissipation. | | 6M, 6P, 6U, | | | | | | 7B, 7C, 7D, | | | | | | 7H, 7L, 7N, | | | | | | 7R | | | | | ### **INTERLEAVED BURST ADDRESS TABLE (MODE = NC OR HIGH)** | FIRST ADDRESS (EXTERNAL) | SECOND ADDRESS (INTERNAL) | THIRD ADDRESS (INTERNAL) | FOURTH ADDRESS (INTERNAL) | |--------------------------|---------------------------|--------------------------|---------------------------| | XX00 | XX01 | XX10 | XX11 | | XX01 | XX00 | XX11 | XX10 | | XX10 | XX11 | XX00 | XX01 | | XX11 | XX10 | XX01 | XX00 | ### **LINEAR BURST ADDRESS TABLE (MODE = LOW)** | FIRST ADDRESS (EXTERNAL) | SECOND ADDRESS (INTERNAL) | THIRD ADDRESS (INTERNAL) | FOURTH ADDRESS (INTERNAL) | |--------------------------|---------------------------|--------------------------|---------------------------| | XX00 | XX01 | XX10 | XX11 | | XX01 | XX10 | XX11 | XX00 | | XX10 | XX11 | XX00 | XX01 | | XX11 | XX00 | XX01 | XX10 | ### **PARTIAL TRUTH TABLE FOR WRITE COMMANDS (x18)** | FUNCTION | GW# | BWE# | BWa# | BWb# | |-----------------|-----|------|------|------| | READ | Н | Н | Х | Х | | READ | Н | L | Н | Н | | WRITE Byte "a" | Н | L | L | Н | | WRITE Byte "b" | Н | L | Н | L | | WRITE All Bytes | Н | L | Ш | L | | WRITE All Bytes | L | Х | Х | Х | ### PARTIAL TRUTH TABLE FOR WRITE COMMANDS (x32/x36) | FUNCTION | GW# | BWE# | BWa# | BWb# | BWc# | BWd# | |-----------------|-----|------|------|------|------|------| | READ | Н | Н | Х | Х | Х | Х | | READ | Н | L | Н | Н | Н | Н | | WRITE Byte "a" | Н | L | L | Н | Н | Н | | WRITE All Bytes | Н | L | L | L | L | L | | WRITE All Bytes | L | Х | Х | Х | Х | Х | **NOTE:** Using BWE# and BWa# through BWd#, any one or more bytes may be written. #### TRUTH TABLE (Notes 1-8) | | ADDRESS | | | | | | | | | | | | |-----------------------------|----------|-----|------|-----|----|-------|-------|------|--------|-----|-----|--------| | OPERATION | USED | CE# | CE2# | CE2 | ZZ | ADSP# | ADSC# | ADV# | WRITE# | OE# | CLK | DQ | | DESELECT Cycle, Power-Down | None | Н | Х | Х | L | Х | L | Х | Х | Χ | L-H | High-Z | | DESELECT Cycle, Power-Down | None | L | Х | L | L | L | Х | Х | X | Χ | L-H | High-Z | | DESELECT Cycle, Power-Down | None | L | Н | Х | L | L | Х | Χ | X | Χ | L-H | High-Z | | DESELECT Cycle, Power-Down | None | L | Х | L | L | Н | L | Х | Х | Х | L-H | High-Z | | DESELECT Cycle, Power-Down | None | L | Н | Х | L | Н | L | Х | Х | Х | L-H | High-Z | | SNOOZE MODE, Power-Down | None | Х | Х | Х | Н | Х | Х | Х | Х | Х | Х | High-Z | | READ Cycle, Begin Burst | External | L | L | Н | L | L | Х | Х | Х | L | L-H | Q | | READ Cycle, Begin Burst | External | L | L | Н | L | L | Х | Х | Х | Н | L-H | High-Z | | WRITE Cycle, Begin Burst | External | L | L | Н | L | Н | L | Х | L | Х | L-H | D | | READ Cycle, Begin Burst | External | L | L | Н | L | Н | L | Х | Н | L | L-H | Q | | READ Cycle, Begin Burst | External | L | L | Н | L | Н | L | Х | Н | Н | L-H | High-Z | | READ Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | Н | L | L-H | Q | | READ Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | Н | Н | L-H | High-Z | | READ Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | Н | L | L-H | Q | | READ Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | Н | Н | L-H | High-Z | | WRITE Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | L | Х | L-H | D | | WRITE Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | L | Х | L-H | D | | READ Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | Н | L | L-H | Q | | READ Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | Н | Н | L-H | High-Z | | READ Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | Н | L | L-H | Q | | READ Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | Н | Н | L-H | High-Z | | WRITE Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | L | Х | L-H | D | | WRITE Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | L | Х | L-H | D | NOTE: 1. X means "Don't Care." # means active LOW. H means logic HIGH. L means logic LOW. - 2. For WRITE#, L means any one or more byte write enable signals (BWa#, BWb#, BWc#, or BWd#) and BWE# are LOW or GW# is LOW. WRITE# = H for all BWx#, BWE#, GW# HIGH. - 3. BWa# enables WRITEs to DQa and DQPa. BWb# enables WRITEs to DQb and DQPb. BWc# enables WRITEs to DQc and DQPc. BWd# enables WRITEs to DQd and DQPd. DQPa and DQPb are only available on the x18 and x36 versions. DQPc and DQPd are only available on the x36 version. - 4. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK. - 5. Wait states are inserted by suspending burst. - 6. For a WRITE operation following a READ operation, OE# must be HIGH before the input data setup time and held HIGH throughout the input data hold time. - 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. - 8. ADSP# LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE# LOW or GW# LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification. # 3.3V VDD, ABSOLUTE MAXIMUM RATINGS* *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. **Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature, and airflow. See Micron Technical Note TN-05-14 for
more information. # 2.5V VDD, ABSOLUTE MAXIMUM RATINGS* #### 3.3V VDD, 3.3V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (0°C \leq T_A \leq +70°C; V_{DD} = +3.3V ±0.165V; V_{DD}Q = +3.3V ±0.165V unless otherwise noted) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | МАХ | UNITS | NOTES | |-------------------------------|---|--------|-------|-----------|-------|-------| | Input High (Logic 1) Voltage | | Vih | 2.0 | VDD + 0.3 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.8 | V | 1, 2 | | Input Leakage Current | $0V \le V$ IN $\le V$ DD | ILı | -1.0 | 1.0 | μA | 3 | | Output Leakage Current | Output(s) disabled,
$0V \le V_{IN} \le V_{DD}$ | ILo | -1.0 | 1.0 | μΑ | | | Output High Voltage | Iон = -4.0mA | Vон | 2.4 | _ | V | 1, 4 | | Output Low Voltage | IoL = 8.0mA | Vol | - | 0.4 | V | 1, 4 | | Supply Voltage | | VDD | 3.135 | 3.465 | ٧ | 1 | | Isolated Output Buffer Supply | | VDDQ | 3.135 | 3.465 | V | 1, 5 | NOTE: 1. All voltages referenced to Vss (GND). 2. For 3.3V VDD: $\begin{array}{ll} \mbox{Overshoot:} & \mbox{V}_{IH} \leq +4.6 \mbox{V for } t \leq {}^t \mbox{KC/2 for } I \leq 20 \mbox{mA} \\ \mbox{Undershoot:} & \mbox{V}_{IL} \geq -0.7 \mbox{V for } t \leq {}^t \mbox{KC/2 for } I \leq 20 \mbox{mA} \\ \mbox{Power-up:} & \mbox{V}_{IH} \leq +3.6 \mbox{V and } \mbox{V}_{DD} \leq 3.135 \mbox{V for } t \leq 200 \mbox{ms} \\ \end{array}$ For 2.5V VDD: Overshoot: VIH \leq +3.6V for t \leq ^tKC/2 for I \leq 20mA Undershoot: VIL \geq -0.5V for t \leq ^tKC/2 for I \leq 20mA Power-up: VIH \leq +2.65V and VDD \leq 2.375V for t \leq 200ms 3. MODE has an internal pull-up, and input leakage = $\pm 10\mu$ A. - 4. The load used for Voh, Vol testing is shown in Figure 2 for 3.3V I/O. AC load current is higher than the shown DC values. AC I/O curves are available upon request. - 5. VddQ should never exceed Vdd. Vdd and VddQ can be connected together. ### 3.3V VDD, 2.5V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (0°C \leq T_A \leq +70°C; V_{DD} = +3.3V ±0.165V; V_{DD}Q = +2.5V ±0.125V unless otherwise noted) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |-------------------------------|--|--------|-------|-----------------------|-------|-------| | Input High (Logic 1) Voltage | Data bus (DQx) | VıhQ | 1.7 | VDDQ + 0.3 | V | 1, 2 | | | Inputs | Vıн | 1.7 | V _{DD} + 0.3 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.7 | V | 1, 2 | | Input Leakage Current | $0V \leq V_{\text{IN}} \leq V_{\text{DD}}$ | ILı | -1.0 | 1.0 | μΑ | 3 | | Output Leakage Current | Output(s) disabled,
$0V \le V_{IN} \le V_{DDQ}$ (DQx) | ILo | -1.0 | 1.0 | μΑ | | | Output High Voltage | Iон = -2.0mA | Vон | 1.7 | _ | V | 1, 4 | | | Iон = -1.0mA | Vон | 2.0 | - | V | 1, 4 | | Output Low Voltage | IoL = 2.0mA | Vol | _ | 0.7 | V | 1, 4 | | | IoL = 1.0mA | Vol | - | 0.4 | V | 1, 4 | | Supply Voltage | | VDD | 3.135 | 3.465 | V | 1 | | Isolated Output Buffer Supply | | VddQ | 2.375 | 2.625 | V | 1 | #### 2.5V Vdd, 2.5V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (0°C \leq T_A \leq +70°C; V_{DD} = +2.5V \pm 0.125V; V_{DD}Q = +2.5V \pm 0.125V unless otherwise noted) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |-------------------------------|--|-----------------|-------|-----------------------|-------|-------| | Input High (Logic 1) Voltage | Data bus (DQx) | VıhQ | 1.7 | $V_{DD}Q + 0.3$ | V | 1, 2 | | | Inputs | Vıн | 1.7 | V _{DD} + 0.3 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.7 | V | 1, 2 | | Input Leakage Current | $0V \leq V_{\text{IN}} \leq V_{\text{DD}}$ | ILı | -1.0 | 1.0 | μΑ | 3 | | Output Leakage Current | Output(s) disabled,
$0V \le V_{IN} \le V_{DD}Q$ (DQx) | ILo | -1.0 | 1.0 | μΑ | | | Output High Voltage | Iон = -2.0mA | Vон | 1.7 | - | V | 1, 4 | | | Iон = -1.0mA | Vон | 2.0 | _ | V | 1, 4 | | Output Low Voltage | IoL = 2.0mA | Vol | _ | 0.7 | V | 1, 4 | | | IoL = 1.0mA | Vol | - | 0.4 | V | 1, 4 | | Supply Voltage | | V _{DD} | 2.375 | 2.625 | V | 1 | | Isolated Output Buffer Supply | | VddQ | 2.375 | 2.625 | V | 1 | NOTE: 1. All voltages referenced to Vss (GND). 2. For 3.3V V_{DD}: $\begin{array}{ll} \mbox{Overshoot:} & \mbox{ViH} \leq +4.6 \mbox{V for } t \leq {}^t \mbox{KC/2 for } I \leq 20 \mbox{mA} \\ \mbox{Undershoot:} & \mbox{ViL} \geq -0.7 \mbox{V for } t \leq {}^t \mbox{KC/2 for } I \leq 20 \mbox{mA} \\ \mbox{Power-up:} & \mbox{ViH} \leq +3.6 \mbox{V and } \mbox{Vdd} \leq 3.135 \mbox{V for } t \leq 200 \mbox{ms} \\ \end{array}$ For 2.5V VDD: $\begin{array}{ll} \text{Overshoot:} & \text{V}_{\text{IH}} \leq +3.6 \text{V for } t \leq {}^{t}\text{KC/2 for } I \leq 20\text{mA} \\ \text{Undershoot:} & \text{V}_{\text{IL}} \geq -0.5 \text{V for } t \leq {}^{t}\text{KC/2 for } I \leq 20\text{mA} \\ \text{Power-up:} & \text{V}_{\text{IH}} \leq +2.65 \text{V and } \text{V}_{\text{DD}} \leq 2.375 \text{V for } t \leq 200\text{ms} \\ \end{array}$ 3. MODE has an internal pull-up, and input leakage = $\pm 10\mu A$. 4. The load used for VoH, VoL testing is shown in Figure 4 for 2.5V I/O. AC load current is higher than the shown DC values. AC I/O curves are available upon request. ### **TQFP CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES | |-------------------------------|---------------------------------|--------|-----|-----|-------|-------| | Control Input Capacitance | $T_A = 25^{\circ}C; f = 1 MHz;$ | Cı | 3 | 4 | pF | 1 | | Input/Output Capacitance (DQ) | VDD = 3.3V | Co | 4 | 5 | pF | 1 | | Address Capacitance | | CA | 3 | 3.5 | pF | 1 | | Clock Capacitance | | Сск | 3 | 3.5 | pF | 1 | ### **BGA CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES | |-----------------------------------|----------------------------------|--------|-----|-----|-------|-------| | Address/Control Input Capacitance | | Cı | 4 | 7 | pF | 5 | | Input/Output Capacitance (DQ) | T _A = 25°C; f = 1 MHz | Co | 4.5 | 5.5 | pF | 5 | | Address Capacitance | | CA | 4 | 7 | pF | 5 | | Clock Capacitance | | Сск | 4.5 | 5.5 | pF | 5 | #### **FBGA CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES | |-----------------------------------|----------------------------------|--------|-----|-----|-------|-------| | Address/Control Input Capacitance | | Cı | 2.5 | 3.5 | pF | 1 | | Output Capacitance (Q) | T _A = 25°C; f = 1 MHz | Co | 4 | 5 | pF | 1 | | Clock Capacitance | | Сск | 2.5 | 3.5 | pF | 1 | **NOTE:** 1. This parameter is sampled. # **TQFP THERMAL RESISTANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | UNITS | NOTES | |---|---|---------------|-----|-------|-------| | Thermal Resistance (Junction to Ambient) | Test conditions follow standard test methods and procedures for measuring thermal | θ_{JA} | 46 | °C/W | 1 | | Thermal Resistance
(Junction to Top of Case) | impedance, per EIA/JESD51. | θ_{JC} | 2.8 | °C/W | 1 | ### **BGA THERMAL RESISTANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | UNITS | NOTES | |---------------------------------------|---|---------------|-----|-------|-------| | Junction to Ambient (Airflow of 1m/s) | Test conditions follow standard test methods and procedures for measuring thermal | θ_{JA} | 40 | °C/W | 1 | | Junction to Case (Top) | impedance, per EIA/JESD51. | θ_{JC} | 9 | °C/W | 1 | | Junction to Pins (Bottom) | | θ_{JB} | 17 | °C/W | 1 | ### **FBGA THERMAL RESISTANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | UNITS | NOTES | |--|---|---------------|-----|-------|-------| | Junction to Ambient
(Airflow of 1m/s) | Test conditions follow standard test methods and procedures for measuring thermal | θ_{JA} | 40 | °C/W | 1 | | Junction to Case (Top) | impedance, per EIA/JESD51. | θ_{JC} | 9 | °C/W | 1 | | Junction to Pins
(Bottom) | | θ_{JB} | 17 | °C/W | 1 | **NOTE:** 1. This parameter is sampled. ### 3.3V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18) (Note 1, unless otherwise noted)($0^{\circ}C \le T_{\Delta} \le +70^{\circ}C$) | | | | | MAX | | | | |---------------------------------------|--|-------------------|-----|------|-----|-------|---------| | DESCRIPTION | CONDITIONS | SYMBOL | TYP | -7.5 | -10 | UNITS | NOTES | | Power Supply
Current:
Operating | Device selected; All inputs \leq V _{IL} or \geq V _{IH} ; Cycle time \geq ^t KC (MIN); V _{DD} = MAX; Outputs open | lod | TBD | 675 | 525 | mA | 2, 3, 4 | | Power Supply
Current: Idle | Device selected; V _{DD} = MAX;
ADSC#, ADSP#, GW#, BWx#,
ADV# \geq V _{IH} ; All inputs \leq V _{SS} + 0.2 or
\geq V _{DD} - 0.2; Cycle time \geq ^t KC (MIN) | l _{DD1} | TBD | 225 | 175 | mA | 3, 4 | | CMOS Standby | Device deselected; $VDD = MAX$;
All inputs $\leq Vss + 0.2$ or $\geq VDD - 0.2$;
All inputs static; CLK frequency = 0 | ISB2 | TBD | 30 | 30 | mA | 3, 4 | | TTL Standby | Device deselected; VDD = MAX;
All inputs ≤ VIL or ≥ VIH;
All inputs static; CLK frequency = 0 | ls _B 3 | TBD | 100 | 100 | mA | 3, 4 | | Clock Running | Device deselected; $VDD = MAX$;
ADSC#, $ADSP#$, $GW#$, $BWx#$,
$ADV\# \ge VH$; AII inputs $\le VSS + 0.2$ or
$\ge VDD - 0.2$; Cycle time $\ge {}^tKC$ (MIN) | lsb4 | TBD | 225 | 175 |
mA | 3, 4 | NOTE: 1. VDDQ = +3.3V or +2.5V. Voltage tolerances: +3.3V ±0.165 or +2.5V ±0.125V for all values of VDD and VDDQ. - 2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and greater output loading. - 3. "Device deselected" means device is in power-down mode as defined in the truth table. "Device selected" means device is active (not in power-down mode). - 4. Typical values are measured at 3.3V, 25°C, and 10ns cycle time. ### 2.5V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (512K x 32/36) (Note 1, unless otherwise noted)($0^{\circ}C \le T_{\Delta} \le +70^{\circ}C$) | | | | | | MAX | | | | |---------------------------------------|--|------------------|-----|-----|------|-----|-------|---------| | DESCRIPTION | CONDITIONS | SYMBOL | TYP | -6 | -7.5 | -10 | UNITS | NOTES | | Power Supply
Current:
Operating | Device selected; All inputs \leq V _{IL} or \geq V _{IH} ; Cycle time \geq ^t KC (MIN); V _{DD} = MAX; Outputs open | lod | TBD | 625 | 512 | 400 | mA | 2, 3, 4 | | Power Supply
Current: Idle | Device selected; V _{DD} = MAX;
ADSC#, ADSP#, GW#, BWx#,
ADV# \geq V _{IH} ; All inputs \leq V _{SS} + 0.2 or
\geq V _{DD} - 0.2; Cycle time \geq ^t KC (MIN) | l _{DD1} | TBD | 210 | 175 | 135 | mA | 3, 4 | | CMOS Standby | Device deselected; $VDD = MAX$;
All inputs $\leq Vss + 0.2$ or $\geq VDD - 0.2$;
All inputs static; CLK frequency = 0 | ls _{B2} | TBD | 25 | 25 | 25 | mA | 3, 4 | | TTL Standby | Device deselected; VDD = MAX;
All inputs ≤ VIL or ≥ VIH;
All inputs static; CLK frequency = 0 | Isb3 | TBD | 80 | 80 | 80 | mA | 3, 4 | | Clock Running | Device deselected; $VDD = MAX$;
ADSC#, $ADSP#$, $GW#$, $BWx#$,
$ADV\# \ge VH$; AII inputs $\le VSS + 0.2$ or
$\ge VDD - 0.2$; Cycle time $\ge {}^tKC$ (MIN) | ISB4 | TBD | 210 | 175 | 135 | mA | 3, 4 | NOTE: 1. VdDQ = +2.5V. Voltage tolerances: +3.3V ±0.165 or +2.5V ±0.125V for all values of VdD and VdDQ. - 2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and greater output loading. - 3. "Device deselected" means device is in power-down mode as defined in the truth table. "Device selected" means device is active (not in power-down mode). - 4. Typical values are measured at 2.5V, 25°C, and 10ns cycle time. ### 3.3V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18) (Note 1, unless otherwise noted)($0^{\circ}C \le T_{\Delta} \le +70^{\circ}C$) | | | | | MAX | | | | |---------------------------------------|---|-------------------|-----|------|-----|-------|---------| | DESCRIPTION | CONDITIONS | SYMBOL | TYP | -7.5 | -10 | UNITS | NOTES | | Power Supply
Current:
Operating | Device selected; All inputs $\leq VIL$ or $\geq VIH$; Cycle time $\geq {}^{t}KC$ (MIN); $VDD = MAX$; Outputs open | lod | TBD | 510 | 400 | mA | 2, 3, 4 | | Power Supply
Current: Idle | Device selected; $VDD = MAX$;
ADSC#, $ADSP#$, $GW#$, $BWx#$,
$ADV\# \ge VIH$; AII inputs $\le VSS + 0.2$ or
$\ge VDD - 0.2$; Cycle time $\ge {}^tKC$ (MIN) | l _{DD1} | TBD | 170 | 140 | mA | 3, 4 | | CMOS Standby | Device deselected; $VDD = MAX$;
All inputs $\leq Vss + 0.2$ or $\geq VDD - 0.2$;
All inputs static; CLK frequency = 0 | Isb2 | TBD | 25 | 25 | mA | 3, 4 | | TTL Standby | Device deselected; VDD = MAX;
All inputs ≤ VIL or ≥ VIH;
All inputs static; CLK frequency = 0 | ls _B 3 | TBD | 75 | 75 | mA | 3, 4 | | Clock Running | Device deselected; $VDD = MAX$;
ADSC#, $ADSP#$, $GW#$, $BWx#$,
$ADV\# \ge VIH$; AII inputs $\le VSS + 0.2$ or
$\ge VDD - 0.2$; $Cycle time \ge {}^tKC (MIN)$ | ISB4 | TBD | 170 | 140 | mA | 3, 4 | NOTE: 1. If VDD = +3.3V, then VDDQ = +3.3V or +2.5V. If VDD = +2.5V, then VDDQ = +2.5V. Voltage tolerances: $+3.3V \pm 0.165$ or $+2.5V \pm 0.125V$ for all values of VDD and VDDQ. - 2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and greater output loading. - 3. "Device deselected" means device is in power-down mode as defined in the truth table. "Device selected" means device is active (not in power-down mode). - 4. Typical values are measured at 3.3V, 25°C, and 10ns cycle time. - 5. The -4 and -5 speed grades are available only in 2.5V VDD with 2.5.V VDDQ. ### 2.5V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18) (Note 1, unless otherwise noted)($0^{\circ}C \le T_{\Delta} \le +70^{\circ}C$) | | | | | | MAX | | | | |---------------------------------------|--|------------------|-----|-----|------|-----|-------|---------| | DESCRIPTION | CONDITIONS | SYMBOL | TYP | -6 | -7.5 | -10 | UNITS | NOTES | | Power Supply
Current:
Operating | Device selected; All inputs \leq V _{IL} or \geq V _{IH} ; Cycle time \geq ^t KC (MIN); V _{DD} = MAX; Outputs open | lod | TBD | 475 | 340 | 305 | mA | 2, 3, 4 | | Power Supply
Current: Idle | Device selected; V _{DD} = MAX;
ADSC#, ADSP#, GW#, BWx#,
ADV# \geq V _{IH} ; All inputs \leq V _{SS} + 0.2 or
\geq V _{DD} - 0.2; Cycle time \geq ^t KC (MIN) | l _{DD1} | TBD | 160 | 130 | 110 | mA | 3, 4 | | CMOS Standby | Device deselected; $VDD = MAX$;
All inputs $\leq Vss + 0.2$ or $\geq VDD - 0.2$;
All inputs static; CLK frequency = 0 | ISB2 | TBD | 20 | 20 | 20 | mA | 3, 4 | | TTL Standby | Device deselected; VDD = MAX;
All inputs ≤ VIL or ≥ VIH;
All inputs static; CLK frequency = 0 | Isb3 | TBD | 60 | 60 | 60 | mA | 3, 4 | | Clock Running | Device deselected; $VDD = MAX$;
ADSC#, $ADSP#$, $GW#$, $BWx#$,
$ADV\# \ge VH$; AII inputs $\le VSS + 0.2$ or
$\ge VDD - 0.2$; Cycle time $\ge {}^tKC$ (MIN) | ISB4 | TBD | 160 | 130 | 110 | mA | 3, 4 | NOTE: 1. VdDQ = +2.5V. Voltage tolerances: +3.3V ±0.165 or +2.5V ±0.125V for all values of VdD and VdDQ. - 2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and greater output loading. - 3. "Device deselected" means device is in power-down mode as defined in the truth table. "Device selected" means device is active (not in power-down mode). - 4. Typical values are measured at 2.5V, 25°C, and 10ns cycle time. ### AC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS (Notes 1, 2, unless otherwise noted)($0^{\circ}C \le T_{\Delta} \le +70^{\circ}C$) | | | - | 6 ³ | -7 | 7.5 | | 10 | | | |---|-------------------|-----|----------------|-----|-----|-----|-----|-------|----------| | DESCRIPTION | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES | | Clock | <u>'</u> | | | | | | | | | | Clock cycle time | ^t KC | 6.0 | | 7.5 | | 10 | | ns | | | Clock frequency | fKF | | 166 | | 133 | | 100 | MHz | | | Clock HIGH time | ^t KH | 2.3 | | 2.5 | | 3.0 | | ns | 4 | | Clock LOW time | ^t KL | 2.3 | | 2.5 | | 3.0 | | ns | 4 | | Output Times | ' | | | • | • | | | | • | | Clock to output valid | ^t KQ | | 3.5 | | 4.0 | | 5.0 | ns | | | Clock to output invalid | tKQX | 1.5 | | 1.5 | | 1.5 | | ns | 5 | | Clock to output in Low-Z | ^t KQLZ | 0 | | 0 | | 0 | | ns | 5, 6, 7, | | Clock to output in High-Z | tKQHZ | | 3.5 | | 4.2 | | 5.0 | ns | 5, 6, 7, | | OE# to output valid | tOEQ | | 3.5 | | 4.2 | | 5.0 | ns | 9 | | OE# to output in Low-Z | ^t OELZ | 0 | | 0 | | 0 | | ns | 5, 6, 7, | | OE# to output in High-Z | tOEHZ | | 3.5 | | 4.2 | | 4.5 | ns | 5, 6, 7, | | Setup Times | ' | | | • | • | | | | • | | Address | ^t AS | 1.5 | | 1.5 | | 2.0 | | ns | 10, 11 | | Address status (ADSC#, ADSP#) | ^t ADSS | 1.5 | | 1.5 | | 2.0 | | ns | 10, 11 | | Address advance (ADV#) | ^t AAS | 1.5 | | 1.5 | | 2.0 | | ns | 10, 11 | | Write signals
(BWa#-BWd#, BWE#, GW#) | tWS | 1.5 | | 1.5 | | 2.0 | | ns | 10, 11 | | Data-in | ^t DS | 1.5 | | 1.5 | | 2.0 | | ns | 10, 11 | | Chip enables (CE#, CE2#, CE2) | ^t CES | 1.5 | | 1.5 | | 2.0 | | ns | 10, 11 | | Hold Times | | 1 | 1 | | | | 1 | 1 | - | | Address | ^t AH | 0.5 | | 0.5 | | 0.5 | | ns | 10, 11 | | Address status (ADSC#, ADSP#) | ^t ADSH | 0.5 | | 0.5 | | 0.5 | | ns | 10, 11 | | Address advance (ADV#) | ^t AAH | 0.5 | | 0.5 | | 0.5 | | ns | 10, 11 | | Write signals
(BWa#-BWd#, BWE#, GW#) | tWH | 0.5 | | 0.5 | | 0.5 | | ns | 10, 11 | | Data-in | t _{DH} | 0.5 | | 0.5 | | 0.5 | | ns | 10, 11 | | Chip enables (CE#, CE2#, CE2) | ^t CEH | 0.5 | | .5 | | 0.5 | | ns | 10, 11 | - NOTE: 1. Test conditions as specified with the output loading shown in Figure 1 for 3.3V I/O (VDDQ = +3.3V ±0.165V) and Figure 3 for 2.5V I/O (VDDQ = +2.5V ±0.125V) unless otherwise noted. - 2. If VDD = +3.3V, then VDDQ = +3.3V or +2.5V. If VDD = +2.5V, then VDDQ = +2.5V. Voltage tolerances: $+3.3V \pm 0.165$ or $+2.5V \pm 0.125V$ for all values of VDD and VDDQ. - 3. The -6 speed grade is available in 2.5V VDD with 2.5V VDDQ only. - 4. Measured as HIGH above VIH and LOW below VIL. - 5. This parameter is measured with output load as shown in Figure 2 for 3.3V I/O and Figure 4 for 2.5V I/O. - 6. This parameter is sampled. - 7. Transition is measured ±500mV from steady state voltage. - 8. Refer to Technical Note TN-58-09, "Synchronous SRAM Bus Contention Design Considerations," for a more thorough discussion on these parameters. - 9. OE# is a "Don't Care" when a byte write enable is sampled LOW. - 10. A
WRITE cycle is defined by at least one byte write enable LOW and ADSP# HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and ADSC# or ADV# LOW or ADSP# LOW for the required setup and hold times. - 11. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP# or ADSC# is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK when either ADSP# or ADSC# is LOW to remain enabled. # 3.3V VDD, 3.3V I/O AC TEST CONDITIONS | Input pulse levelsVIH = (VDD/2.2) + 1.5V | |--| | $VIL = (VDD/2.2) - 1.5V$ | | Input rise and fall times1ns | | Input timing reference levels Vdd/2.2 | | Output reference levelsVDDQ/2.2 | | Output load See Figures 1 and 2 | # 3.3V I/O Output Load Equivalent ### Figure 1 ### 3.3V VDD, 2.5V I/O AC TEST CONDITIONS | Input pulse levelsVIH = (VDD/2.64) + 1.25V | |--| | VIL = (VDD/2.64) - 1.25V | | Input rise and fall times1ns | | Input timing reference levels VDD/2.64 | | Output reference levelsVDDQ/2 | | Output load See Figures 3 and 4 | ### Figure 2 ### 2.5V Vdd, 2.5V I/O AC TEST CONDITIONS | Input pulse levels | |---------------------------------| | VIL = (VDD/2) - 1.25V | | Input rise and fall times1ns | | Input timing reference levels | | Output reference levelsVDDQ/2 | | Output load See Figures 3 and 4 | ### 2.5V I/O Output Load Equivalent ### Figure 3 #### **LOAD DERATING CURVES** Micron 1 Meg x 18, 512K x 32, and 512K x 36 SyncBurst SRAM timing is dependent upon the capacitive loading on the outputs. Consult the factory for copies of I/O current versus voltage curves. # Figure 4 #### **SNOOZE MODE** SNOOZE MODE is a low-current, "power-down" mode in which the device is deselected and current is reduced to Isb2z. The duration of SNOOZE MODE is dictated by the length of time ZZ is in a HIGH state. After the device enters SNOOZE MODE, all inputs except ZZ become gated inputs and are ignored. ZZ is an asynchronous, active HIGH input that causes the device to enter SNOOZE MODE. When ZZ becomes a logic HIGH, Isb2z is guaranteed after the setup time ^tZZ is met. Any READ or WRITE operation pending when the device enters SNOOZE MODE is not guaranteed to complete successfully. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed. #### **SNOOZE MODE ELECTRICAL CHARACTERISTICS** | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------------|------------------|-------------------|---------------------|---------------------|-------|-------| | Current during SNOOZE MODE | $ZZ \geq V_{IH}$ | Isb2Z | | 10 | mA | | | ZZ active to input ignored | | ^t ZZ | | 2(^t KC) | ns | 1 | | ZZ inactive to input sampled | | ^t RZZ | 2(^t KC) | | ns | 1 | | ZZ active to snooze current | | ^t ZZI | | 2(^t KC) | ns | 1 | | ZZ inactive to exit snooze current | | ^t RZZI | 0 | | ns | 1 | NOTE: 1. This parameter is sampled. #### **SNOOZE MODE WAVEFORM** ### READ TIMING³ #### **READ TIMING PARAMETERS** | | -(| 5* | -7 | ' .5 | -1 | -10 | | |-------------------|-----|-----|-----|-------------|-----|-----|-------| | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | ^t KC | 6.0 | | 7.5 | | 10 | | ns | | fKF | | 166 | | 133 | | 100 | MHz | | ^t KH | 2.3 | | 2.5 | | 3.0 | | ns | | ^t KL | 2.3 | | 2.5 | | 3.0 | | ns | | ^t KQ | | 3.5 | | 4.0 | | 5.0 | ns | | ^t KQX | 1.5 | | 1.5 | | 1.5 | | ns | | ^t KQLZ | 0 | | 0 | | 0 | | ns | | ^t KQHZ | | 3.5 | | 4.2 | | 5.0 | ns | | ^t OEQ | | 3.5 | | 4.2 | | 5.0 | ns | | ^t OELZ | 0 | | 0 | | 0 | | ns | | ^t OEHZ | | 3.5 | | 4.2 | | 4.5 | ns | | | -6 | -6* | | -7.5 | | -10 | | |-------------------|-----|-----|-----|------|-----|-----|-------| | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | ^t AS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t ADSS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t AAS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t WS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t CES | 1.5 | | 1.5 | | 2.0 | | ns | | ^t AH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t ADSH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t AAH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t WH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t CEH | 0.5 | | 0.5 | | 0.5 | | ns | ^{*}The -6 speed grade is available in 2.5V VDD with 2.5V VDDQ only. - NOTE: 1. Q(A2) refers to output from address A2. Q(A2 + 1) refers to output from the next internal burst address following A2. - 2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW. - 3. Timing is shown assuming that the device was not enabled before entering into this sequence. OE# does not cause Q to be driven until after the following clock rising edge. - 4. Outputs are disabled within one clock cycle after deselect. #### **WRITE TIMING** #### WRITE TIMING PARAMETERS | | -(| -6* | | -7.5 | | -10 | | |-------------------|-----|-----|-----|------|-----|-----|-------| | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | ^t KC | 6.0 | | 7.5 | | 10 | | ns | | fKF | | 166 | | 133 | | 100 | MHz | | ^t KH | 2.3 | | 2.5 | | 3.0 | | ns | | ^t KL | 2.3 | | 2.5 | | 3.0 | | ns | | ^t OEHZ | | 3.5 | | 4.2 | | 4.5 | ns | | ^t AS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t ADSS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t AAS | 1.5 | | 1.5 | | 2.0 | | ns | | tWS | 1.5 | | 1.5 | | 2.0 | | ns | | | -6* | | -7 | ' .5 | -10 | | | |-------------------|-----|-----|-----|-------------|-----|-----|-------| | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | ^t DS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t CES | 1.5 | | 1.5 | | 2.0 | | ns | | ^t AH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t ADSH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t AAH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t WH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t DH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t CEH | 0.5 | | 0.5 | | 0.5 | | ns | ^{*}The -6 speed grade is available in 2.5V VdD with 2.5V VdDQ only. - NOTE: 1. D(A2) refers to input for address A2. D(A2 + 1) refers to input for the next internal burst address following A2. - 2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW. - 3. OE# must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled. - 4. ADV# must be HIGH to permit a WRITE to the loaded address. - 5. Full-width WRITE can be initiated by GW# LOW; or GW# HIGH and BWE#, BWa# and BWb# LOW for x18 device; or GW# HIGH and BWE#, BWa#-BWd# LOW for x32 and x36 devices. ### **READ/WRITE TIMING³** #### **READ/WRITE TIMING PARAMETERS** | | -(| 5* | -7.5 | | -10 | | | |-------------------|-----|-----|------|-----|-----|-----|-------| | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | ^t KC | 6.0 | | 7.5 | | 10 | | ns | | fKF | | 166 | | 133 | | 100 | MHz | | ^t KH | 2.3 | | 2.5 | | 3.0 | | ns | | ^t KL | 2.3 | | 2.5 | | 3.0 | | ns | | ^t KQ | 3.5 | | 4.0 | | 5.0 | ns | | | ^t KQLZ | 0 | | 0 | | 0 | | ns | | ^t OELZ | 0 | | 0 | | 0 | | ns | | ^t OEHZ | | 3.5 | | 4.2 | | 4.5 | ns | | ^t AS | 1.5 | | 1.5 | | 2.0 | | ns | | | -(| -6* | | -7.5 | | -10 | | |-------------------|-----|-----|-----|------|-----|-----|-------| | SYMBOL | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | ^t ADSS | 1.5 | | 1.5 | | 2.0 | | ns | | tWS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t DS | 1.5 | | 1.5 | | 2.0 | | ns | | ^t CES | 1.5 | | 1.5 | | 2.0 | | ns | | ^t AH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t ADSH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t WH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t DH | 0.5 | | 0.5 | | 0.5 | | ns | | ^t CEH | 0.5 | | 0.5 | | 0.5 | | ns | ^{*}The -6 speed grade is available in 2.5V VdD with 2.5V VdDQ only. - NOTE: 1. Q(A4) refers to output from address A4. Q(A4 + 1) refers to output from the next internal burst address following A4. - 2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW. - 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP#, ADSC#, or ADV# cycle is performed. - 4. GW# is HIGH. - 5. Back-to-back READs may be controlled by either ADSP# or ADSC#. # IEEE 1149.1 SERIAL BOUNDARY SCAN (JTAG) The SRAM incorporates a serial boundary scan test access port (TAP). This port operates in accordance with IEEE Standard 1149.1-1990 but does not have the set of functions required for full 1149.1 compliance. These functions from the IEEE specification are excluded because their inclusion places an added delay in the critical speed path of the SRAM. Note that the TAP controller functions in a manner that does not conflict with the operation of other devices using 1149.1 fully compliant TAPs. The TAP operates using JEDEC-standard 2.5V I/O logic levels. The SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. #### **DISABLING THE JTAG FEATURE** These pins can be left floating (unconnected), if the JTAG function is not to be implemented. Upon power-up, the device will come up in a reset state which will not interfere with the operation of the device. # TEST ACCESS PORT (TAP) TEST CLOCK (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. #### **TEST MODE SELECT (TMS)** The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this pin unconnected if the TAP is not used. The pin is pulled up internally, resulting in a logic HIGH level. #### **TEST DATA-IN (TDI)** The TDI pin is used to
serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register, see Figure 5. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See Figure 6.) Figure 5 TAP Controller State Diagram NOTE: The 0/1 next to each state represents the value of TMS at the rising edge of TCK. #### **TEST DATA-OUT (TDO)** The TDO output pin is used to serially clock data-out from the registers. The output is active depending upon the current state of the TAP state machine. (See Figure 5.) The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See Figure 6.) #### **PERFORMING A TAP RESET** A RESET is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating. At power-up, the TAP is reset internally to ensure that TDO comes up in a High-Z state. #### **TAP REGISTERS** Registers are connected between the TDI and TDO pins and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI pin on the rising edge of TCK. Data is output on the TDO pin on the falling edge of TCK. #### **INSTRUCTION REGISTER** Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins as shown in Figure 5. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary "01" pattern to allow for fault isolation of the board-level serial test data path. #### **BYPASS REGISTER** To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO pins. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (Vss) when the BYPASS instruction is executed. #### **BOUNDARY SCAN REGISTER** The boundary scan register is connected to all the input and bidirectional pins on the SRAM. The x36 configuration has a 71-bit-long register, the x32 configuration has a 67-bit-long register, and the x18 configuration has a 52-bit-long register. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO pins when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be used to capture the contents of the I/O ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. # Figure 6 TAP Controller Block Diagram *x = 52 for the x18 configuration, x = 67 for the x32 configuration, x = 71 for the x36 configuration. #### **IDENTIFICATION (ID) REGISTER** The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions table. # TAP INSTRUCTION SET OVERVIEW Eight different instructions are possible with the threebit instruction register. All combinations are listed in the Instruction Codes table. Three of these instructions are listed as RESERVED and should not be used. The other five instructions are described in detail below. The TAP controller used in this SRAM is not fully compliant to the 1149.1 convention because some of the mandatory 1149.1 instructions are not fully implemented. The TAP controller cannot be used to load address, data or control signals into the SRAM and cannot preload the I/O buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of SAMPLE/PRELOAD; rather, it performs a capture of the I/O ring when these instructions are executed. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO pins. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state. #### **EXTEST** EXTEST is a mandatory 1149.1 instruction which is to be executed whenever the instruction register is loaded with all 0s. EXTEST is not implemented in this SRAM TAP controller, and therefore this device is not compliant to 1149.1. The TAP controller does recognize an all-0 instruction. When an EXTEST instruction is loaded into the instruction register, the SRAM responds as if a SAMPLE/PRELOAD instruction has been loaded. There is one difference between the two instructions. Unlike the SAMPLE/PRELOAD instruction, EXTEST places the SRAM outputs in a High-Z state. #### **IDCODE** The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO pins and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state. #### **SAMPLE Z** The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. It also places all SRAM outputs into a High-Z state. #### SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The PRELOAD portion of this instruction is not implemented, so the device TAP controller is not fully 1149.1-compliant. When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and bidirectional pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 10 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible. To guarantee that the boundary scan register will capture the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture setup plus hold time (tCS plus tCH). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and CK# captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. Note that since the PRELOAD part of the command is not implemented, putting the TAP to the Update-DR state while performing a SAMPLE/PRELOAD instruction will have the same effect as the Pause-DR command. #### **BYPASS** When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between TDI and TDO. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. #### **RESERVED** These instruction are not implemented but are reserved for future use. Do not use these instructions. #### TAP AC ELECTRICAL CHARACTERISTICS (Notes 1, 2) ($+20^{\circ}C \le T_1 \le +100^{\circ}C$; $+2.4V \le V_{DD} \le +2.6V$) | DESCRIPTION | SYMBOL | MIN | MAX | UNITS | |-------------------------|-------------------|-----|-----|-------| | Clock | <u> </u> | | • | • | | Clock cycle time | ^t THTH | 100 | | ns | | Clock frequency | fTF | | 10 | MHz | | Clock HIGH time | ^t THTL | 40 | | ns | | Clock LOW time | ^t TLTH | 40 | | ns | | Output Times | • | • | • | • | | TCK LOW to TDO unknown | ^t TLOX | 0 | | ns | | TCK LOW to TDO valid | ^t TLOV | | 20 | ns | | TDI valid to TCK HIGH | ^t DVTH | 10 | | ns | | TCK HIGH to TDI invalid | ^t THDX | 10 | | ns | | Setup Times | • | • | • | • | | TMS setup | ^t MVTH | 10 | | ns | | Capture setup | ^t CS | 10 | | ns | | Hold Times | • | | | | | TMS hold | ^t THMX | 10 | | ns | | Capture hold | ^t CH | 10 | | ns | **NOTE:** 1. ^tCS and ^tCH refer to the setup and hold time requirements of latching data from the boundary scan register. 2. Test conditions are specified using the load in Figure 7. #### **TAP AC TEST CONDITIONS** | Input pulse levelsVss to | o 2.5V | |--------------------------------------|--------| | Input rise and fall times | 1ns | | Input timing reference levels | 1.25V | | Output reference levels | 1.25V | | Test load termination supply voltage | 1.25V | # Figure 7 TAP AC Output Load Equivalent ### 3.3V VDD,
TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (20°C \leq T₁ \leq +110°C; +3.135V \leq V_{DD} \leq +3.465V unless otherwise noted) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------|-----------------------------------|--------|------|-----------|-------|-------| | Input High (Logic 1) Voltage | | ViH | 2.0 | VDD + 0.3 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.8 | V | 1, 2 | | Input Leakage Current | $0V \le V_{IN} \le V_{DD}$ | ILı | -5.0 | 5.0 | μA | | | Output Leakage Current | Output(s) disabled, | ILo | -5.0 | 5.0 | μΑ | | | | $0V \le V_{IN} \le V_{DD}Q$ (DQx) | | | | | | | Output Low Voltage | Ιοις = 100μΑ | Vol1 | | 0.7 | V | 1 | | Output Low Voltage | IOLT = 2mA | Vol2 | | 0.8 | V | 1 | | Output High Voltage | Іонс = -100µA | Vон1 | 2.9 | | V | 1 | | Output High Voltage | І онт = - 2mA | Voн2 | 2.0 | | V | 1 | ### 2.5V VDD, TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS $(20^{\circ}\text{C} \le T_1 \le +110^{\circ}\text{C}; +2.4\text{V} \le \text{V}_{DD} \le +2.6\text{V} \text{ unless otherwise noted})$ | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------|-----------------------------------|--------------|------|-----------|-------|-------| | Input High (Logic 1) Voltage | | Vıн | 1.7 | VDD + 0.3 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.7 | V | 1, 2 | | Input Leakage Current | 0V≤ VIN≤ VDD | ILı | -5.0 | 5.0 | μA | | | Output Leakage Current | Output(s) disabled, | ILo | -5.0 | 5.0 | μΑ | | | | $0V \le V_{IN} \le V_{DD}Q$ (DQx) | | | | | | | Output Low Voltage | Ιοις = 100μΑ | Vol1 | | 0.2 | V | 1 | | Output Low Voltage | IOLT = 2mA | Vol2 | | 0.7 | V | 1 | | Output High Voltage | Іонс = -100µA | V он1 | 2.1 | | V | 1 | | Output High Voltage | Іонт = -2mA | V он2 | 1.7 | | V | 1 | NOTE: 1. All voltages referenced to Vss (GND). 2. Overshoot: VIH (AC) \leq VDD + 1.5V for t \leq t KHKH/2 Undershoot: VIL (AC) \geq -0.5V for t \leq t KHKH/2 Power-up: Vih \leq +2.6V and Vdd \leq 2.4V and VddQ \leq 1.4V for t \leq 200ms During normal operation, VDDQ must not exceed VDD. Control input signals (such as LD#, R/W#, etc.) may not have pulse widths less than ^tKHKL (MIN) or operate at frequencies exceeding ^fKF (MAX). ### **IDENTIFICATION REGISTER DEFINITIONS** | INSTRUCTION FIELD | 512K x 18 | DESCRIPTION | |---------------------------------------|-------------|--| | REVISION NUMBER (31:28) | xxxx | Reserved for version number. | | DEVICE DEPTH
(27:23) | 00111 | Defines depth of 512K or 1Mb words. | | DEVICE WIDTH
(22:18) | 00011 | Defines width of x18, x32, or x36 bits. | | MICRON DEVICE ID (17:12) | xxxxxx | Reserved for future use. | | MICRON JEDEC ID
CODE (11:1) | 00000101100 | Allows unique identification of SRAM vendor. | | ID Register Presence
Indicator (0) | 1 | Indicates the presence of an ID register. | ### **SCAN REGISTER SIZES** | REGISTER NAME | BIT SIZE | | | | | |---------------|------------------------|--|--|--|--| | Instruction | 3 | | | | | | Bypass | 1 | | | | | | ID | 32 | | | | | | Boundary Scan | x18: 52 x32: 67 x36: 7 | | | | | ### **INSTRUCTION CODES** | INSTRUCTION | CODE | DESCRIPTION | |----------------|------|---| | EXTEST | 000 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant. | | IDCODE | 001 | Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operations. | | SAMPLE Z | 010 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High-Z state. | | RESERVED | 011 | Do Not Use: This instruction is reserved for future use. | | SAMPLE/PRELOAD | 100 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. This instruction does not implement 1149.1 preload function and is therefore not 1149.1-compliant. | | RESERVED | 101 | Do Not Use: This instruction is reserved for future use. | | RESERVED | 110 | Do Not Use: This instruction is reserved for future use. | | BYPASS | 111 | Places the bypass register between TDI and TDO. This operation does not affect SRAM operations. | ### 165-PIN FBGA BOUNDARY SCAN ORDER (x18) | FBGA BIT# | SIGNAL NAME | PIN ID | |-----------|-------------|--------| | 1 | SA | 6N | | 2 | SA | 11P | | 3 | SA | 8P | | 4 | SA | 9R | | 5 | SA | 9P | | 6 | SA | 10R | | 7 | SA | 10P | | 8 | SA | 11R | | 9 | SA | 8R | | 10 | DQa | 10M | | 11 | DQa | 10L | | 12 | DQa | 10K | | 13 | DQa | 10J | | 14 | ZZ | 11H | | 15 | DQa | 11G | | 16 | DQa | 11F | | 17 | DQa | 11E | | 18 | DQa | 11D | | 19 | DQPa | 11C | | 20 | SA | 11A | | 21 | SA | 10B | | 22 | SA | 10A | | 23 | ADV# | 9A | | 24 | ADSP# | 9B | | 25 | ADSC# | 8A | | 26 | OE# (G#) | 8B | | 27 | BWE# | 7A | | FBGA BIT# | SIGNAL NAME | PIN ID | |-----------|-----------------|--------| | 28 | GWE# | 7B | | 29 | CLK | 6B | | 30 | CE2# | 6A | | 31 | BWa# | 5B | | 32 | BWb# | 4A | | 33 | CE2 | 3B | | 34 | CE# | 3A | | 35 | SA | 2A | | 36 | SA | 2B | | 37 | DQb | 2D | | 38 | DQb | 2E | | 39 | DQb | 2F | | 40 | DQb | 2G | | 41 | V _{DD} | 1H | | 42 | DQb | 1J | | 43 | DQb | 1K | | 44 | DQb | 1L | | 45 | DQb | 1M | | 46 | DQPb | 1N | | 47 | MODE (LBO#) | 1R | | 48 | SA | 3P | | 49 | SA | 3R | | 50 | SA | 4P | | 51 | SA | 4R | | 52 | SA1 | 6P | | 53 | SA0 | 6R | ### **165-PIN FBGA BOUNDARY SCAN ORDER (x32)** | FBGA BIT# | SIGNAL NAME | PIN ID | |-----------|-------------|--------| | 1 | SA | 6N | | 2 | SA | 11P | | 3 | SA | 8P | | 4 | SA | 9R | | 5 | SA | 9P | | 6 | SA | 10R | | 7 | SA | 10P | | 8 | SA | 11R | | 9 | SA | 8R | | 10 | DQa | 11M | | 11 | DQa | 11L | | 12 | DQa | 11K | | 13 | ZZ | 11J | | 14 | DQa | 10M | | 15 | DQa | 10L | | 16 | DQa | 10K | | 17 | DQa | 10J | | 18 | ZZ | 11H | | 19 | DQb | 11G | | 20 | DQb | 11F | | 21 | DQb | 11E | | 22 | DQb | 11D | | 23 | DQb | 10G | | 24 | DQb | 10F | | 25 | DQb | 10E | | 26 | DQb | 10D | | 27 | SA | 10B | | 28 | SA | 10A | | 29 | ADV# | 9A | | 30 | ADSP# | 9B | | 31 | ADSC# | 8A | | 32 | OE# (G#) | 8B | | 33 | BWE# | 7A | | 34 | GW# | 7B | | FBGA BIT# | SIGNAL NAME | PIN ID | |-----------|-----------------|--------| | 35 | CLK | 6B | | 36 | CF2# | 6A | | 37 | BWa# | 5B | | 38 | BWb# | 5A | | 39 | BWc# | 4A | | 40 | BWd# | 4B | | 41 | CE2 | 3B | | 42 | CE# | 3A | | 43 | SA | 2A | | 44 | SA | 2B | | 45 | DQc | 1D | | 46 | DQc | 1E | | 47 | DQc | 1F | | 48 | DQc | 1G | | 49 | DQc | 2D | | 50 | DQc | 2E | | 51 | V _{DD} | 2F | | 52 | DQd | 2G | | 53 | DQd | 1H | | 54 | DQd | 1J | | 55 | DQd | 1K | | 56 | DQd | 1L | | 57 | DQd | 1M | | 58 | DQd | 2J | | 59 | DQd | 2K | | 60 | DQd | 2L | | 61 | DQd | 2M | | 62 | SA | 1R | | 63 | SA | 3F | | 64 | SA | 3R | | 65 | SA | 4P | | 66 | SA | 4R | | 67 | SA1 | 6P | | 68 | SA0 | 6R | ### 165-PIN FBGA BOUNDARY SCAN ORDER (x36) | FBGA BIT# | SIGNAL NAME | PIN ID | |-----------|-------------|--------| | 1 | SA | 6N | | 2 | SA | 11P | | 3 | SA | 8P | | 4 | SA | 9R | | 5 | SA | 9P | | 6 | SA | 10R | | 7 | SA | 10P | | 8 | SA | 11R | | 9 | SA | 8R | | 10 | NF/DQPa | 11N | | 11 | DQa | 11M | | 12 | DQa | 11L | | 13 | DQa | 11K | | 14 | ZZ | 11J | | 15 | DQa | 10M | | 16 | DQa | 10L | | 17 | DQa | 10K | | 18 | DQa | 10J | | 19 | ZZ | 11H | | 20 | DQb | 11G | | 21 | DQb | 11F | | 22 | DQb | 11E | | 23 | DQb | 11D | | 24 | DQb | 10G | | 25 | DQb | 10F | | 26 | DQb | 10E | | 27 | DQb | 10D | | 28 | NF/DQPb | 11C | | 29 | SA | 10B | | 30 | SA | 10A | | 31 | ADV# | 9A | | 32 | ADSP# | 9B | | 33 | ADSC# | 8A | | 34 | OE# (G#) | 8B | | 35 | BWE# | 7A | | 36 | GW# | 7B | | FBGA BIT# | SIGNAL NAME | PIN ID | |-----------|-----------------|--------| | 37 | CLK | 6B | | 38 | CF2# | 6A | | 39 | BWa# | 5B | | 40 | BWb# | 5A | | 41 | BWc# | 4A | | 42 | BWd# | 4B | | 43 | CE2 | 3B | | 44 | CE# | 3A | | 45 | SA | 2A | | 46 | SA | 2B | | 47 | NF/DQPc | 1C | | 48 | DQc | 1D | | 49 | DQc | 1E | | 50 | DQc | 1F | | 51 | DQc | 1G | | 52 | DQc | 2D | | 53 | DQc | 2E | | 54 | V _{DD} | 2F | | 55 | DQd | 2G | | 56 | DQd | 1H | | 57 | DQd | 1J | | 58 | DQd | 1K | | 59 | DQd | 1L | | 60 | DQd | 1M | | 61 | DQd | 2J | | 62 | DQd | 2K | | 63 | DQd | 2L | | 64 | DQd | 2M | | 65 | NF/DQPd | 1N | | 66 | SA | 1R | | 67 | SA | 3F | | 68 | SA | 3R | | 69 | SA | 4P | | 70 | SA | 4R | | 71 | SA1 | 6P | | 72 | SA0 | 6R | # 119-PIN PBGA BOUNDARY SCAN ORDER (x18) | BGA BIT# | SIGNAL NAME | PIN ID | |----------|-------------|--------| | 1 | SA | 2T | | 2 | SA | 6R | | 3 | SA | 5T | | 4 | SA | 3B | | 5 | SA | 5B | | 6 | SA | 5C | | 7 | SA | 6C | | 8 | DQa | 7P | | 9 | DQa | 6N | | 10 | DQa | 6L | | 11 | DQa | 7K | | 12 | ZZ | 7T | | 13 | DQa | 6H | | 14 | DQa | 7G | | 15 | DQa | 6F | | 16 | DQa | 7E | | 17 | DQPa | 6D | | 18 | SA | 6T | | 19 | SA | 6A | | 20 | SA | 5A | | 21 | ADV# | 4G | | 22 | ADSP | 4A | | 23 | ADSC# | 4B | | 24 | OE# (G#) | 4F | | 25 | BWE# | 4M | | 26 | GW# | 4H | | BGA BIT# | SIGNAL NAME | PIN ID | |----------|-----------------|--------| | 27 | CLK | 4K | | 28 | SA | 6B | | 29 | BWa# | 5L | | 30 | BWb# | 3G | | 31 | SA | 2B | | 32 | CE# | 4E | | 33 | SA | 3A | | 34 | SA | 2A | | 35 | DQb | 1D | | 36 | DQb | 2E | | 37 | DQb | 2G | | 38 | DQb | 1H | | 39 | V _{DD} | 5R | | 40 | DQb | 2K | | 41 | DQb | 1L | | 42 | DQb | 2M | | 43 | DQb | 1N | | 44 | DQPb | 2P | | 45 | MODE (LBO#) | 3R | | 46 | SA | 2C | | 47 | SA | 3C | | 48 | SA | 2R | | 49 | SA | 3T | | 50 | SA1 | 4N | | 51 | SA0 | 4P | # 119-PIN PBGA BOUNDARY SCAN ORDER (x32) | BGA BIT# | SIGNAL NAME | PIN ID | |----------|-------------
--------| | 1 | SA | 4T | | 2 | SA | 6R | | 3 | SA | 5T | | 4 | SA | 3B | | 5 | SA | 5B | | 6 | SA | 5C | | 7 | SA | 6C | | 8 | DQa | 7N | | 9 | DQa | 6M | | 10 | DQa | 7L | | 11 | DQa | 6K | | 12 | DQa | 7P | | 13 | DQa | 6N | | 14 | DQa | 6L | | 15 | DQa | 7K | | 16 | ZZ | 7T | | 17 | DQb | 6H | | 18 | DQb | 7G | | 19 | DQb | 6F | | 20 | DQb | 7E | | 21 | DQb | 6E | | 22 | DQb | 7H | | 23 | DQb | 7D | | 24 | DQb | 6G | | 25 | SA | 6A | | 26 | SA | 5A | | 27 | ADV# | 4G | | 28 | ADSP# | 4A | | 29 | ADSC# | 4B | | 30 | OE# (G#) | 4F | | 31 | BWE# | 4M | | 32 | GW# | 4H | | 33 | CLK | 4K | | BGA BIT# | SIGNAL NAME | PIN ID | |----------|-------------|--------| | 34 | SA | 6B | | 35 | BWa# | 5L | | 36 | BWb# | 5G | | 37 | BWc# | 3G | | 38 | BWd# | 3L | | 39 | SA | 2B | | 40 | CE# | 4E | | 41 | SA | 3A | | 42 | SA | 2A | | 43 | DQc | 1E | | 44 | DQc | 2F | | 45 | DQc | 1G | | 46 | DQc | 2H | | 47 | DQc | 1D | | 48 | DQc | 2E | | 49 | DQc | 2G | | 50 | DQc | 1H | | 51 | VDD | 5R | | 52 | DQd | 2K | | 53 | DQd | 1L | | 54 | DQd | 2M | | 55 | DQd | 1N | | 56 | DQd | 1P | | 57 | DQd | 1K | | 58 | DQd | 2L | | 59 | DQd | 2N | | 60 | MODE (LBO#) | 3R | | 61 | SA | 2C | | 62 | SA | 3C | | 63 | SA | 2R | | 64 | SA | 3T | | 65 | SA1 | 4N | | 66 | SA0 | 4P | ### 119-PIN PBGA BOUNDARY SCAN ORDER (x36) | BGA BIT# | SIGNAL NAME | PIN ID | |----------|-------------|--------| | 1 | SA | 4T | | 2 | SA | 6R | | 3 | SA | 5T | | 4 | SA | 3B | | 5 | SA | 5B | | 6 | SA | 5C | | 7 | SA | 6C | | 8 | NF/DQPa | 6P | | 9 | DQa | 7N | | 10 | DQa | 6M | | 11 | DQa | 7L | | 12 | DQa | 6K | | 13 | DQa | 7P | | 14 | DQa | 6N | | 15 | DQa | 6L | | 16 | DQa | 7K | | 17 | ZZ | 7T | | 18 | DQb | 6H | | 19 | DQb | 7G | | 20 | DQb | 6F | | 21 | DQb | 7E | | 22 | DQb | 6E | | 23 | DQb | 7H | | 24 | DQb | 7D | | 25 | DQb | 6G | | 26 | NF/DQPb | 6D | | 27 | SA | 6A | | 28 | SA | 5A | | 29 | ADV# | 4G | | 30 | ADSP# | 4A | | 31 | ADSC# | 4B | | 32 | OE# (G#) | 4F | | 33 | BWE# | 4M | | 34 | GW# | 4H | | 35 | CLK | 4K | | BGA BIT# | SIGNAL NAME | PIN ID | |----------|-----------------|--------| | 36 | SA | 6B | | 37 | BWa# | 5L | | 38 | BWb# | 5G | | 39 | BWc# | 3G | | 40 | BWd# | 3L | | 41 | SA | 2B | | 42 | CE# | 4E | | 43 | SA | 3A | | 44 | SA | 2A | | 45 | NF/DQPc | 2D | | 46 | DQc | 1E | | 47 | DQc | 2F | | 48 | DQc | 1G | | 49 | DQc | 2H | | 50 | DQc | 1D | | 51 | DQc | 2E | | 52 | DQc | 2G | | 53 | DQc | 1H | | 54 | V _{DD} | 5R | | 55 | DQd | 2K | | 56 | DQd | 1L | | 57 | DQd | 2M | | 58 | DQd | 1N | | 59 | DQd | 1P | | 60 | DQd | 1K | | 61 | DQd | 2L | | 62 | DQd | 2N | | 63 | NF/DQPd | 2P | | 64 | MODE (LBO#) | 3R | | 65 | SA | 2C | | 66 | SA | 3C | | 67 | SA | 2R | | 68 | SA | 3T | | 69 | SA1 | 4N | | 70 | SA0 | 4P | ### 100-PIN PLASTIC TQFP (JEDEC LQFP) **NOTE:** 1. All dimensions in millimeters $\frac{MAX}{MINI}$ or typical where noted. 2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side. #### **119-PIN BGA** **NOTE:** 1. All dimensions in millimeters $\frac{MAX}{MIN}$ or typical where noted. 2. Solder ball land pad is 0.6mm. #### 165-PIN FBGA **NOTE:** 1. All dimensions in millimeters $\frac{MAX}{MIN}$ or typical where noted. 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992 Micron is a registered trademark and the Micron logo and M logo are trademarks of Micron Technology, Inc. SyncBurst is a trademark and Micron is a registered trademark of Micron Technology, Inc. Pentium is a registered trademark of Intel Corporation. ### **REVISION HISTORY** | Rev. C, Pub. 9/01, ADVANCE • Removed Industrial Temperature references • Removed -4, and -5 speed grades | Sept/01 | |--|------------| | Changed IDD tables by splitting x18 and x32/36 configuration Changed NC references to NF Removed note "Not Recommended for New Design" from 119-pin FBGA Changed boundary scan order, 165-pin FBGA, x18 and x32/36 8P (SA) moved to bit #9 from bit #3 Increased IDD table values | | | Rev. 2/01, ADVANCE • Added Industrial Temperature note and references • Added references for speed grades at specific voltages. -5ns available for 2.5V VDD and 2.5V VDDQ Change 16Mb to 18Mb references Add -4 speed grade to datasheet for 2.5V VDD and 2.5V VDDQ | Feb/24/01 | | Rev. 1/01, ADVANCE • Added 165-pin JTAG Boundary Scan • Added 119-pin PBGA package and references | Jan/9/01 | | Rev. 8/00, ADVANCE • Removed FBGA Part Marking Guide | Aug/22/00 | | Rev. 7/00, ADVANCE • Changed FBGA capacitance values • CI; TYP 2.5 pF from 4 pF; MAX 3.5 pF from 5 pF • Co; TYP 4 pF from 6 pF; MAX 5 pF from 7 pF • CCK; TYP 2.5 pF from 5 pF; MAX 3.5 pF from 6 pF | Aug/8/00 | | Rev. 7/00, ADVANCE • Removed Industrial Temperature references | July/24/00 | | Rev. 7/00, ADVANCE • Added 165-pin FBGA package • Added FBGA part marking references • Removed 119-pin PBGA and references • Added note: "IT available for -8.5 and -10 speed grades" | Jun/28/00 | | Rev. 4/00, ADVANCE • Change pin 14 to NC from VDD • Added note: ZZ has internal pull-down | Apr/13/00 | | Rev. 3/00, ADVANCE • Updated Boundary Scan Order | Apr/6/00 | | Rev. 1/00, ADVANCE • Added ADVANCE status | Jan/18/00 | | Rev. 11/99, ADVANCE • MT58L1MY18P • Added BGA JTAG functionality | Nov/11/99 |