SD1050

RF \& MICROWAVE TRANSISTORS VHF-UHF APPLICATIONS

Features

- 130-400 MHz
- 28 VOLTS
- $\mathrm{P}_{\text {OUt }}=$ 3.0 WATTS
- $\mathrm{G}_{\mathrm{P}}=4.8 \mathrm{~dB}$ MINIMUM
- HIGH POWER GAIN
- COMMON EMITTER CONFIGURATION

DESERIPTION:

This line of silicon epitaxial NPN planar high frequency transistor employs a multi emitter electrode design. This feature together with a heavily diffused base matrix located between the individual emitters results in high RF current handling capability, high power gain, low base resistance and low output capacitance. These transistors are intended for Class A, B, or C amplifier, oscillator or frequency multiplier circuits and are specifically designed for operation in the VHF-UHF region.

ABSOLUTE MAXIMUM RATINGS [TCASE $=25^{\circ} \mathrm{C}$]

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage	$\mathbf{6 5}$	V
$\mathrm{V}_{\mathrm{CES}}$	Collector-Emitter Voltage	40	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base VoItage	4.0	V
I_{C}	Device Current	1.5	A
$\mathrm{P}_{\text {DISS }}$	Power Dissipation	11.6	\mathbf{W}
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	$+\mathbf{2 0 0}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$\mathbf{- 6 5}$ to +150	${ }^{\circ} \mathrm{C}$

Thermal Data

$\mathrm{R}_{\mathrm{TH}(J-\mathrm{C})}$	Junction-case Thermal Resistance	15.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

SD1050

ELECTRICAL SPECIFICATIONS [Tcase $=\mathbf{2 5}{ }^{\circ} \mathrm{C}$]

STATIC

Symbol	Test Conditions		Value			Unit
			Min.	Typ.	Max.	
$\mathrm{BV}_{\text {cBo }}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$		65	---	---	V
$\mathrm{BV}_{\text {EBO }}$	$\mathrm{I}_{\mathrm{E}}=0.1 \mathrm{~mA}$		4	---	---	V
$\mathrm{BV}_{\text {cEo }}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$		40	---	---	V
$\mathrm{I}_{\text {ceo }}$	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$		---	---	0.1	mA
$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$	10	---	---	---

DYNAMIC

Symbol	Test Conditions			Value			
				Min.	Typ.	Max.	Unit
Pout	$\mathrm{f}=400 \mathrm{MHz}$	$\mathrm{P}_{\text {IN }}=1 \mathrm{~W}$	$\mathrm{V}_{\mathrm{cc}}=28 \mathrm{~V}$	3	---	---	W
η_{c}	$\mathrm{f}=400 \mathrm{MHz}$	$\mathrm{P}_{\text {IN }}=1 \mathrm{~W}$	$\mathrm{V}_{\mathrm{cc}}=28 \mathrm{~V}$	40	---	---	\%
G_{P}	$\mathrm{f}=400 \mathrm{MHz}$	$\mathrm{P}_{\text {IN }}=1 \mathrm{~W}$	$\mathrm{V}_{\mathrm{cc}}=28 \mathrm{~V}$	4.8	---	---	dB
$\mathrm{C}_{\text {OB }}$	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$		---	---	10	pF

PACKAGE MEGHANICAL DATA

PABKAEE STYGEMTS7

	MINIMUM INCHES/MM	MAXIMUM INCHES/MM		MINIMUM INCHES/MM	MAXIMUM INCHES/MM
A	$.090 / 2,29$	$.110 / 2,79$	I	$.420 / 10,67$	$.455 / 11,56$
B	$.185 / 4,70$	$.215 / 5,46$	\mid	$.140 / 3,56$	$.160 / 4,06$
C	$.420 / 10,67$	$.440 / 11,18$			
D	$.030 / 0,76$	$.046 / 1,17$			
E	$.320 / 8,13$	$.360 / 9,14$			
F	$.090 / 2,29$	$.135 / 3,43$			
G	$.215 / 5,46$	$.320 / 8,13$			
H		$.480 / 12,19$			

STANDARD STUD
SHORT STUD

