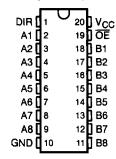
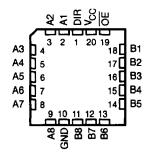
- DECEMBER 1983 - REVISED JANUARY 1995

- Bidirectional Bus Transceivers In **High-Density 20-Pin Packages**
- Inverting Logic
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs


#### description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. These devices transmit data from the A bus to the B bus or from the B bus to the A bus. depending upon the level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.


The -1 version of the SN74ALS640B is identical to the standard version, except that the recommended maximum IOI for the -1 version is increased to 48 mA. There is no -1 version of the SN54ALS640B.

The SN54ALS640B and SN54AS640 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS640B and SN74AS640 characterized for operation from 0°C to 70°C.

SN54ALS640B, SN54AS640 . . . J PACKAGE SN74ALS640B, SN74AS640 . . . DW OR N PACKAGE (TOP VIEW)



SN54ALS840B, SN54AS840 . . . FK PACKAGE (TOP VIEW)



#### **FUNCTION TABLE**

| INP | UTS | OPERATION       |  |  |  |
|-----|-----|-----------------|--|--|--|
| ŌĒ  | DIR |                 |  |  |  |
| L   | L   | B data to A bus |  |  |  |
| L   | Н   | Ā data to B bus |  |  |  |
| Н   | Х   | Isolation       |  |  |  |

SDAS122A - DECEMBER 1983 - REVISED JANUARY 1995

#### logic diagram (positive logic) logic symbol† OE \_\_\_\_\_\_19 ŌĒ 3 EN1 [BA] 3 EN2 [AB] 18 В1 4 Δ 2∇ 17 **B**2 16 **B**3 15 **B**4 6 14 **B**5 13 **B6** 12 **B7** 11 To Seven Other Transceivers В8

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

| Supply voltage, V <sub>CC</sub>                       |                |
|-------------------------------------------------------|----------------|
| Input voltage, V <sub>1</sub> : All inputs            |                |
| I/O ports                                             | 5.5 V          |
| Operating free-air temperature range, TA: SN54ALS640B | –55°C to 125°C |
| SN74ALS640B                                           | 0°C to 70°C    |
| Storage temperature range                             | 65°C to 150°C  |

1<u>8</u> B1

#### recommended operating conditions

|                 |                                | SN  | 54ALS64 | ЮB  | SN7 | 4AL\$64 | 0B           | UNIT |
|-----------------|--------------------------------|-----|---------|-----|-----|---------|--------------|------|
|                 |                                | MIN | NOM     | MAX | MIN | NOM     | MAX          | UNII |
| VCC             | Supply voltage                 | 4.5 | 5       | 5.5 | 4.5 | 5       | 5.5          | ٧    |
| V <sub>IH</sub> | High-level input voltage       | 2   |         |     | 2   |         |              | ٧    |
| VIL             | Low-level input voltage        |     |         | 0.7 |     |         | 0.8          | ٧    |
| ЮН              | High-level output current      |     |         | -12 |     |         | -15          | mA   |
| la.             | Law lavel autout ourrent       |     |         | 12  |     |         | 24           | 4    |
| lOL             | Low-level output current       |     |         |     |     |         | 48 <b>\$</b> | mA   |
| TA              | Operating free-air temperature | -55 |         | 125 | 0   |         | 70           | °C   |
|                 |                                |     |         |     |     |         |              |      |

<sup>§</sup> Applies only to the -1 version and only if VCC is between 4.75 V and 5.25 V

<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

<sup>‡</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SDAS122A - DECEMBER 1983 - REVISED JANUARY 1995

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |                                       | 7507.00                                     | SN54ALS640B SN74ALS640    |                    |      | SN54ALS640B |        | 0B   | LINIT  |      |
|-----------|---------------------------------------|---------------------------------------------|---------------------------|--------------------|------|-------------|--------|------|--------|------|
|           |                                       | TEST CO                                     | TEST CONDITIONS           |                    | TYPT | MAX         | MIN    | TYPT | MAX    | UNIT |
| Vik       |                                       | V <sub>CC</sub> = 4.5 V,                    | l <sub>1</sub> = -18 mA   |                    |      | -1.5        |        |      | - 1.5  | V    |
|           | · · · · · · · · · · · · · · · · · · · | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | I <sub>OH</sub> = -0.4 mA | V <sub>CC</sub> -2 | 2    |             | Vcc -2 | 2    |        |      |
| 1/        |                                       |                                             | IOH = -3 mA               | 2.4                | 3.2  |             | 2.4    | 3.2  |        | v    |
| VOH       |                                       | V <sub>CC</sub> = 4.5 V                     | IOH = -12 mA              | 2                  |      |             |        |      |        | ٧    |
|           |                                       |                                             | IOH = -15 mA              |                    |      |             | 2      |      |        |      |
|           |                                       |                                             | IOL = 12 mA               |                    | 0.25 | 0.4         |        | 0.25 | 0.4    |      |
| VOL       |                                       | V <sub>CC</sub> = 4.5 V                     | I <sub>OL</sub> = 24 mA   |                    |      |             |        | 0.35 | 0.5    | ٧    |
|           |                                       |                                             | IOL = 48 mA‡              | _                  |      |             |        | 0.35 | 0.5    |      |
| 1.        | Control inputs                        | V 55V                                       | V <sub>j</sub> = 7 V      |                    |      | 0.1         |        |      | 0.1    | m A  |
| ij        | A or B ports                          | V <sub>CC</sub> = 5.5 V                     | V <sub>I</sub> = 5.5 V    |                    |      | 0.1         |        |      | 0.1 mA | IIIA |
| l         | Control inputs                        | V 55V                                       | V- 07V                    |                    |      | 20          |        |      | 20     | μА   |
| ΙΗ        | A or B ports§                         | V <sub>CC</sub> = 5.5 V,                    | V <sub>I</sub> = 2.7 V    |                    | -    | 20          |        |      | 20     | μА   |
|           | Control inputs                        | V EEV                                       | V 0.4V                    |                    |      | -0.1        |        |      | -0.1   | mΑ   |
| 11L       | A or B ports§                         | V <sub>CC</sub> = 5.5 V,                    | V <sub>I</sub> = 0.4 V    |                    |      | -0.1        |        |      | -0.1   | mA   |
| lo¶       |                                       | V <sub>CC</sub> = 5.5 V,                    | V <sub>O</sub> = 2.25 V   | -20                |      | -112        | -30    |      | -112   | mA   |
|           |                                       |                                             | Outputs high              |                    | 19   | 50          |        | 19   | 45     |      |
| lcc       |                                       | V <sub>CC</sub> = 5.5 V                     | Outputs low               |                    | 27   | 60          |        | 27   | 55     | mA   |
|           |                                       |                                             | Outputs disabled          |                    | 28   | 55          |        | 28   | 50     |      |

#### switching characteristics (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 4.5 V to 5.5 V,<br>C <sub>L</sub> = 50 pF,<br>R1 = 500 Ω,<br>R2 = 500 Ω,<br>T <sub>A</sub> = MIN to MAX# |     | UNIT |     |    |
|------------------|-----------------|----------------|----------------------------------------------------------------------------------------------------------------------------|-----|------|-----|----|
|                  |                 |                | SN54ALS640B SN74ALS640B                                                                                                    |     |      |     |    |
|                  |                 |                | MIN MAX                                                                                                                    | MAX | MIN  | MAX |    |
| tPLH             | A or B          |                | 2                                                                                                                          | 14  | 2    | 11  |    |
| tPHL             | AUID            | B or A         | 2                                                                                                                          | 13  | 2    | 10  | ns |
| <sup>t</sup> PZH |                 | 4.5            | 4                                                                                                                          | 25  | 4    | 21  |    |
| tPZL .           | ŌĒ              | A or B         | 5                                                                                                                          | 27  | 5    | 24  | ns |
| t <sub>PHZ</sub> | ŌĒ              | A or B         | 2                                                                                                                          | 12  | 2    | 10  |    |
| tPLZ             |                 | Aorb           | 3                                                                                                                          | 20  | 3    | 15  | ns |

<sup>#</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>†</sup> All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C. ‡ Applies only to the -1 version and only if V<sub>CC</sub> is between 4.75 V and 5.25 V

<sup>§</sup> For I/O ports, the parameters IIH and IIL include the off-state output current.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS122A - DECEMBER 1983 - REVISED JANUARY 1995

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage, V <sub>CC</sub>                                  | 7 V            |
|------------------------------------------------------------------|----------------|
| Input voltage, V <sub>I</sub> : All inputs                       | 7 V            |
| I/O ports                                                        |                |
| Operating free-air temperature range, T <sub>A</sub> : SN54AS640 | -55°C to 125°C |
| SN74AS640                                                        | 0°C to 70°C    |
| Storage temperature range                                        | -65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### recommended operating conditions

|     | · · · · · · · · · · · · · · · · · · · | SI  | N54AS64 | . 01 | SN74AS640 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNIT |      |
|-----|---------------------------------------|-----|---------|------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
|     |                                       | MIN | NOM     | MAX  | MIN       | NOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAX  | ONII |
| Vcc | Supply voltage                        | 4.5 | 5       | 5.5  | 4.5       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5  | ٧    |
| ViH | High-level input voltage              | 2   |         |      | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ٧    |
| VIL | Low-level input voltage               |     |         | 0.8  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8  | V    |
| IOH | High-level output current             |     |         | -12  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -15  | _ mA |
| IOL | Low-level output current              |     |         | 48   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64   | mA   |
| TA  | Operating free-air temperature        | -55 |         | 125  | 0         | , and the second | 70   | ပ္   |

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

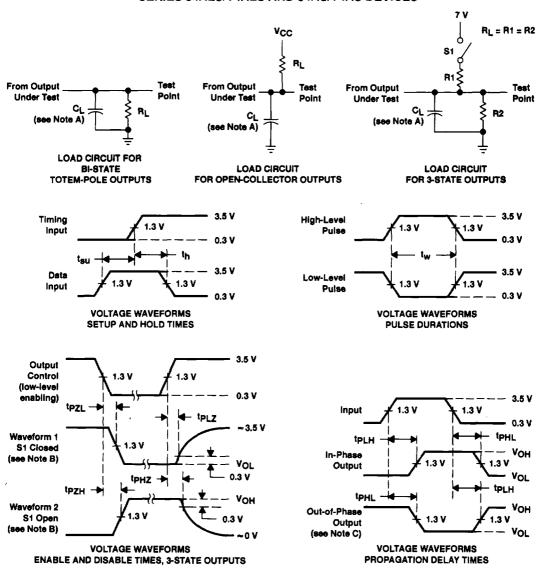
|                | DADAMETED TEST |                                   | TEST CONDITIONS SN54AS640 MIN TYP* N |        | IAS640 SN74AS640 |       |                    | ю    |      |      |
|----------------|----------------|-----------------------------------|--------------------------------------|--------|------------------|-------|--------------------|------|------|------|
| PARAMETER      |                | 1EST CO                           |                                      |        | TYP‡             | MAX   | MIN                | TYP‡ | MAX  | UNIT |
| ViK            |                | V <sub>CC</sub> = 4.5 V,          | lj = -18 mA                          |        |                  | -1.2  |                    |      | -1.2 | ٧    |
|                |                | V <sub>CC</sub> = 4.5 V,          | IOH = -2 mA                          | VCC -2 |                  |       |                    |      |      |      |
|                |                | V <sub>CC</sub> = 4.5 V to 5.5 V, | IOH = -2 mA                          |        |                  |       | V <sub>CC</sub> -2 |      |      |      |
| ۷он            |                |                                   | IOH = -3 mA                          | 2.4    | 3.2              |       | 2.4                | 3.2  |      | ٧    |
|                |                | V <sub>CC</sub> = 4.5 V           | IOH = ~12 mA                         | 2.4    |                  |       |                    |      | ,    | 1    |
|                |                | .]                                | IOH = -15 mA                         |        |                  |       | 2.4                |      |      |      |
| 1/             |                | V 45V                             | IOL = 48 mA                          |        | 0.3              | 0.55  |                    |      |      | V    |
| VOL            |                | V <sub>CC</sub> = 4.5 V           | IOL = 64 mA                          |        |                  |       |                    | 0.35 | 0.55 |      |
| 1.             | Control inputs | V 55V                             | V <sub>I</sub> = 7 V                 |        |                  | 0.1   |                    |      | 0.1  | mA   |
| t <sub> </sub> | A or B ports   | V <sub>CC</sub> = 5.5 V           | V <sub>I</sub> = 5.5 V               |        |                  | 0.1   |                    |      | 0.1  | mA   |
| l              | Control inputs | V 55V                             | V <sub>I</sub> = 2.7 V               |        |                  | 20    |                    |      | 20   |      |
| ήн<br>—-       | A or B ports§  | V <sub>CC</sub> = 5.5 V,          | V(= 2.7 V                            |        |                  | 70    |                    |      | 70   | μΑ   |
| lu.            | Control inputs | V <sub>CC</sub> = 5.5 V,          | V <sub>I</sub> = 0.4 V               |        |                  | -0.5  |                    |      | -0.5 | 4    |
| ll.            | A or B ports\$ | ACC = 2.9 A'                      |                                      |        | -0.75            |       |                    |      | 0.75 | mA   |
| lo¶            | ·              | V <sub>CC</sub> = 5.5 V,          | V <sub>O</sub> = 2.25 V              | -50    |                  | - 150 | -50                |      | -150 | mA   |
|                |                |                                   | Outputs high                         |        | 37               | 58    |                    | 37   | 58   |      |
| lcc            |                | V <sub>CC</sub> = 5.5 V           | Outputs low                          |        | 78               | 123   |                    | 78   | 123  | mA   |
|                |                |                                   | Outputs disabled                     |        | 51               | 80    |                    | 51   | 80   | 1    |

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.



<sup>§</sup> For I/O ports, the parameters I/H and I/L include the off-state output current.


SDAS122A - DECEMBER 1983 - REVISED JANUARY 1995

# switching characteristics (see Figure 1)

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FROM<br>(INPUT) | TO<br>(OUTPUT) | CL<br>R1<br>R2 | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $C_L = 50 \text{ pF},$ R1 = 500 Ω, R2 = 500 Ω, $T_A = \text{MIN to MAX}^{\dagger}$ |       |        |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------|-------|--------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | SN544          | S640                                                                                                                           | SN74A | \\$640 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | MIN            | MAX                                                                                                                            | MIN   | MAX    | 1  |
| tPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A or B          |                | 1              | 8                                                                                                                              | 2     | 7      |    |
| tPHL the temperature of the temp | 1 AOIB          | B or A         | 1              | 7                                                                                                                              | 2     | 6      | ns |
| <sup>†</sup> PZH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δe              |                | 2              | 10                                                                                                                             | 2     | 8      |    |
| †PZL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŌĒ              | A or B         | 2              | 12                                                                                                                             | 2     | 10     | ns |
| tPHZt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ŌĒ              | A or B         | 2              | 9                                                                                                                              | 2     | 8      |    |
| tPLZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OE .            | Aorb           | 2              | 16                                                                                                                             | 2     | 13     | ns |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

# PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES



- NOTES: A. CL includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
  - D. All input pulses have the following characteristics: PRR ≤ 1 MHz, t<sub>f</sub> = t<sub>f</sub> = 2 ns, duty cycle = 50%.
  - E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

