Datasheet

Rochester Electronics

 Manufactured ComponentsRochester branded components are manufactured using either die/wafer purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-

35835

- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Low-Voltage, CMOS Analog Multiplexers/Switches

General Description

The MAX4051/MAX4052/MAX4053 and MAX4051A/ MAX4052A/MAX4053A are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4051/A), two 4-channel multiplexers (MAX4052/A), and three sin-gle-pole/double-throw (SPDT) switches (MAX4053/A). The A-suffix parts are fully characterized for on-resistance match, on-resistance flatness, and low leakage.
These CMOS devices can operate continuously with dual power supplies ranging from $\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ or a single supply between +2.7 V and +16 V . Each switch can handle rail-to-rail analog signals. The off-leakage current is only 0.1 nA at $+25^{\circ} \mathrm{C}$ or 5 nA at $+85^{\circ} \mathrm{C}$ (MAX4051A/MAX4052A/MAX4053A).
All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using $\pm 5 \mathrm{~V}$ or a single +5 V supply.

Applications

Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits

- Pin Compatible with Industry-Standard 74HC4051/74HC4052/74HC4053
- Guaranteed On-Resistance: 100Ω with $\pm 5 \mathrm{~V}$ Supplies
- Guaranteed Match Between Channels: 6Ω (MAX4051A-MAX4053A) 12Ω (MAX4051-MAX4053)
- Guaranteed Low Off-Leakage Currents: 0.1 nA at $+25^{\circ} \mathrm{C}$ (MAX4051A-MAX4053A) 1nA at $+25^{\circ}$ C (MAX4051-MAX4053)
- Guaranteed Low On-Leakage Currents: 0.1 nA at $+25^{\circ} \mathrm{C}$ (MAX4051A-MAX4053A) 1nA at $+25^{\circ} \mathrm{C}$ (MAX4051-MAX4053)
- Single-Supply Operation from +2.0V to +16V Dual-Supply Operation from $\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- TTL/CMOS-Logic Compatible
- Low Distortion: < 0.04\% (600 $)$
- Low Crosstalk: <-90dB (50 $)$
- High Off-Isolation: <-90dB (50)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4051ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4051ACSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4051ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP

Ordering Information continued at end of data sheet.

Low-Voltage, CMOS Analog Multiplexers/Switches

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

Plastic DIP (derate 10.53mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 842 mW
Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............. 696 mW
QSOP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW
CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 800 mW
Operating Temperature Ranges
MAX405_C_ E/MAX405_AC_E $0^{\circ} \mathrm{C}$ to + $70^{\circ} \mathrm{C}$
MAX405_E_ E/MAX405_AE_E........................-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX405_MJE/MAX405_AMJE-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) 300

Note 1: Signals on any terminal exceeding $V+$ or V - are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\mathrm{V}_{\text {COM }}, \mathrm{V}_{\text {NO }}$			C, E, M	V-		V+	V
COM-NO On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 3 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	100	Ω
				C, E, M			125	
COM-NO On-Resistance Match Between Channels (Note 3)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{NO}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 3 \mathrm{~V} \end{aligned}$	MAX4051A, MAX4052A, MAX4053A	$T_{A}=+25^{\circ} \mathrm{C}$			6	Ω
				C, E, M			12	
			$\begin{aligned} & \text { MAX4051, } \\ & \text { MAX4052, } \\ & \text { MAX4053 } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			12	
				C, E, M			18	
COM-NO On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{NO}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}=-3 \mathrm{~V}, 0 \mathrm{~V}, 3 \mathrm{~V} \end{aligned}$	MAX4051A, MAX4052A, MAX4053A	$T_{A}=+25^{\circ} \mathrm{C}$			10	Ω
				C, E, M			15	
NO Off-Leakage Current (Note 5)	INO(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=-4.5 \mathrm{~V} \end{aligned}$	MAX4051, MAX4052, MAX4053	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
		$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \end{aligned}$	MAX4051A, MAX4052A, MAX4053A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	0.002	0.1	
				C, E	-5		5	
				M	-100		100	

Low-Voltage, CMOS Analog
 Multiplexers/Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Low-Voltage, CMOS Analog Multiplexers/Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)		UNITS
DIGITAL I/O							
ADD, INH Input Logic Threshold High	VIH		C, E, M	2.4			V
ADD, INH Input Logic Threshold Low	VIL		C, E, M			0.8	V
ADD, INH Input Current Logic High or Low	IIH, IIL	$\mathrm{V}_{\text {Add }}$, $\mathrm{V}_{\text {INH }}=\mathrm{V}+$, OV	C, E, M	-1	0.03	1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 6)	ton	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50	175	ns
			C, E, M			225	
Turn-Off Time (Note 6)	toff	Figure 3	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$		40	150	ns
			C, E, M			200	
Transition Time	tTRANS	Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		75	250	ns
Break-Before-Make Delay	topen	Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2	10		ns
Charge Injection (Note 6)	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V},$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	10	pC
NO Off-Capacitance	CNO(OFF)	$\mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2		pF
COM Off-Capacitance	CCOm(OFF)	$\mathrm{V}_{\text {COM }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2		pF
Switch On-Capacitance	C(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		pF
Off-Isolation	VISO	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		<-90		dB
Channel-to-Channel Crosstalk	V_{CT}	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		<-90		dB
POWER SUPPLY							
Power-Supply Range	$\mathrm{V}+$, V-		C, E, M	± 2.7		± 8	V
V+ Supply Current	I+	$\mathrm{INH}=\mathrm{ADD}=0 \mathrm{~V}$ or $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.1	1	$\mu \mathrm{A}$
			C, E, M			10	
V- Supply Current	I-	$\mathrm{INH}=\mathrm{ADD}=0 \mathrm{~V}$ or $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.1	1	$\mu \mathrm{A}$
			C, E, M	-10			

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Δ RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$ to OV and OV to -3 V .
Note 5: Leakage parameters are 100\% tested at maximum-rated hot operating temperature, and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 6: Guaranteed by design, not production tested.

Low-Voltage, CMOS Analog Multiplexers/Switches

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\mathrm{V}_{\text {COM }}$, $\mathrm{V}_{\text {NO }}$			C, E, M	V-		V+	V
COM-NO On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, I_{\mathrm{NO}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		125	225	Ω
				C, E, M			280	
NO Off-Leakage Current (Note 5)	INO(OFF)	$\begin{aligned} & V_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
		$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-10		10	
				M	-100		100	
COM Off-Leakage Current (Note 5)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$	MAX4051/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
			MAX4052/A, MAX4053/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-5		5	
				M	-50		50	
		$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$	MAX4051/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-10		10	
				M	-100		100	
			MAX4052/A, MAX4053/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-5		5	
				M	-50		50	
COM On-Leakage Current (Note 5)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V} \end{aligned}$	MAX4051/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
			MAX4052/A, MAX4053/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-10		10	
				M	-100		100	
DIGITAL I/O								
ADD, INH Input Logic Threshold High	V_{IH}			C, E, M	2.4			V
ADD, INH Input Logic Threshold Low	VIL			C, E, M			0.8	V
ADD, INH Input Current Logic High or Low	IIH, IIL	$\mathrm{V}_{\text {ADD }}, \mathrm{V}_{\text {INH }}=\mathrm{V}^{+}, 0 \mathrm{~V}$		C, E, M	-1	0.03	1	$\mu \mathrm{A}$
POWER SUPPLY								
V+ Supply Current	$1+$	$\operatorname{INH}=A D D=0 \mathrm{~V} \text { or } \mathrm{V}+$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
				C, E, M			10	

Low-Voltage, CMOS Analog Multiplexers/Switches

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			TYP (Note 2)	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 6)	ton	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		90	200	ns
			C, E, M			275	
Turn-Off Time (Note 6)	toff	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	125	ns
			C, E, M			175	
Break-Before-Make Delay	topen	Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30		ns
Charge Injection (Note 6)	Q	$C_{L}=1 \mathrm{nF}, \mathrm{RS}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V},$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	10	pC
Off-Isolation	VISO	$\begin{aligned} & C L=15 \mathrm{pF}, \mathrm{RL}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		<-90		dB
Channel-to-Channel Crosstalk	$V_{C T}$	$\begin{aligned} & C L=15 \mathrm{pF}, \mathrm{RL}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		<-90		dB

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$ to OV and OV to -3 V .
Note 5: Leakage parameters are 100\% tested at maximum-rated hot operating temperature, and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 6: Guaranteed by design, not production tested.

Low-Voltage, CMOS Analog Multiplexers/Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\mathrm{V}_{\text {COM }}, \mathrm{V}_{\text {NO }}$			C, E, M	V-		V+	V
COM-NO On-Resistance	Ron	$\begin{aligned} & I_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}+=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		250	525	Ω
				C, E, M			700	
NO Off-Leakage Current (Note 5)	INO(OFF)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
		$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-10		10	
				M	-100		100	
COM Off-Leakage Current (Note 5)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$	MAX4051/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
			MAX4052/A, MAX4053/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-5		5	
				M	-50		50	
		$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} \end{aligned}$	MAX4051/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-10		10	
				M	-100		100	
			MAX4052/A, MAX4053/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-5		5	
				M	-50		50	
COM On-Leakage Current (Note 5)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V} \end{aligned}$	MAX4051/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	nA
				C, E	-10		10	
				M	-100		100	
			MAX4052/A, MAX4053/A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.002	1	
				C, E	-10		10	
				M	-100		100	
DIGITAL I/O								
ADD, INH Input Logic Threshold High	V_{IH}			C, E, M	2.4			V
ADD, INH Input Logic Threshold Low	VIL			C, E, M			0.8	V
ADD, INH Input Current Logic High or Low	IIH, IIL	$\mathrm{V}_{\text {ADD }}, \mathrm{V}_{\text {INH }}=\mathrm{V}_{+}, \mathrm{OV}$		C, E, M	-1	0.03	1	$\mu \mathrm{A}$
POWER SUPPLY								
V+ Supply Current	$1+$	$\operatorname{INH}=A D D=0 \mathrm{~V} \text { or } \mathrm{V}_{+}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
				C, E, M			10	

Low-Voltage, CMOS Analog Multiplexers/Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 6)	ton	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		180	600	ns
			C, E, M			700	
Turn-Off Time (Note 6)	toff	Figure 3	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$		100	300	ns
			C, E, M			400	
Break-Before-Make Delay	topen	Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		90		ns
Charge Injection (Note 6)	Q	$\mathrm{CL}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{RS}=0 \Omega, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V},$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	10	pC
Off-Isolation	VISO	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{RL}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		<-90		dB
Channel-to-Channel Crosstalk	$V_{C T}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, R \mathrm{RL}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		<-90		dB

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Δ RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$ to OV and OV to -3 V .
Note 5: Leakage parameters are 100\% tested at maximum-rated hot operating temperature, and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 6: Guaranteed by design, not production tested

Low-Voltage, CMOS Analog Multiplexers/Switches

Typical Operating Characteristics

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Voltage, CMOS Analog Multiplexers/Switches

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Descriptions

PIN			NAME	FUNCTION
$\begin{aligned} & \text { MAX4051/ } \\ & \text { MAX4051A } \end{aligned}$	$\begin{aligned} & \text { MAX4052/ } \\ & \text { MAX4052A } \end{aligned}$	$\begin{gathered} \text { MAX4053/ } \\ \text { MAX4053A } \end{gathered}$		
$\begin{gathered} 1,2,4,5,12, \\ 13,14,15 \end{gathered}$	-	-	NO0-NO7	Analog Switch Inputs 0-7
3	-	-	COM	Analog Switch Common
-	1, 2, 4, 5	-	NO0B-NO3B	Analog Switch "B" Inputs 0-3
-	3	15	COMB	Analog Switch "B" Common
-	-	1	NOB	Analog Switch "B" Normally Open Input
-	-	2	NCB	Analog Switch "B" Normally Closed Input
-	-	3	NOA	Analog Switch "A" Normally Open Input
-	-	5	NCA	Analog Switch "A" Normally Closed Input
6	6	6	INH	Digital Inhibit Input. Normally connect to GND. Can be driven to logic high to set all switches off.
7	7	7	V-	Negative Analog Supply Voltage Input. Connect to GND for single-supply operation.
8	8	8	GND	Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to $\mathrm{V}+$ and V -.)
9	-	11	ADDC	Digital Address "C" Input
10	9	10	ADDB	Digital Address "B" Input
11	10	9	ADDA	Digital Address "A" Input
-	11, 12, 14, 15	-	NO0A-NO3A	Analog Switch "A" Inputs 0-3
-	13	4	COMA	Analog Switch "A" Common
-	-	12	NCC	Analog Switch "C" Normally Closed Input
-	-	13	NOC	Analog Switch "C" Normally Open Input
-	-	14	COMC	Analog Switch "C" Common
16	16	16	V+	Positive Analog and Digital Supply Voltage Input

Note: NO, NC, and COM pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.

Low-Voltage, CMOS Analog Multiplexers/Switches

Table 1. Truth Table/Switch Programming

INH	ADDRESS BITS			ON SWITCHES		
	ADDC*	ADDB	ADDA	$\begin{aligned} & \hline \text { MAX4051/ } \\ & \text { MAX4051A } \end{aligned}$	$\begin{aligned} & \hline \text { MAX4052/ } \\ & \text { MAX4052A } \end{aligned}$	$\begin{gathered} \hline \text { MAX4053/ } \\ \text { MAX4053A } \end{gathered}$
1	X	X	X	All switches open	All switches open	All switches open
0	0	0	0	COM-NOO	COMB-NOOB, COMA-NOOA	COMA-NCA, COMB-NCB, COMC-NCC
0	0	0	1	COM-NO1	COMB-NO1B, COMA-NO1A	COMA-NOA, COMB-NCB, COMC-NCC
0	0	1	0	COM-NO2	COMB-NO2B, COMA-NO2A	COMA-NCA, COMB-NOB, COMC-NCC
0	0	1	1	COM-NO3	COMB-NO3B, COMA-NO3A	COMA-NOA, COMB-NOB, COMC-NCC
0	1	0	0	COM-NO4	COMB-NOOB, COMA-NOOA	COMA-NCA, COMB-NCB, COMC-NOC
0	1	0	1	COM-NO5	COMB-NO1B, COMA-NO1A	COMA-NOA, COMB-NCB, COMC-NOC
0	1	1	0	COM-NO6	COMB-NO2B, COMA-NO2A	COMA-NCA, COMB-NOB, COMC-NOC
0	1	1	1	COM-NO7	COMB-NO3B, COMA-NO3A	COMA-NOA, COMB-NOB, COMC-NOC

X = Don't care * ADDC not present on MAX4052.
Note: NO and COM pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

Applications Information

Power-Supply Considerations

 OverviewThe MAX4051/MAX4052/MAX4053 and MAX4051A/ MAX4052A/MAX4053A construction is typical of most CMOS analog switches. They have three supply pins: $\mathrm{V}+$, V -, and GND. $\mathrm{V}+$ and V - are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD-protection diodes are internally connected between each analog signal pin and both $\mathrm{V}+$ and V -. If any analog signal exceeds $\mathrm{V}+$ or V -, one of these diodes will conduct. During normal operation, these (and other) reverse-biased ESD diodes leak, forming the only current drawn from $\mathrm{V}+$ or V -.

Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse biased differently. Each is biased by either $\mathrm{V}+$ or V - and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the $\mathrm{V}+$ and V - pins constitutes the analog signal path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity.
There is no connection between the analog signal paths and GND.

Low-Voltage, CMOS Analog Multiplexers/Switches

V+ and GND power the internal logic and logic-level translators, and set both the input and output logic limits. The logic-level translators convert the logic levels into switched $V+$ and V - signals to drive the gates of the analog signals. This drive signal is the only connection between the logic supplies (and signals) and the analog supplies. $V+$ and V - have ESD-protection diodes to GND.
The logic-level thresholds are TTL/CMOS compatible when $\mathrm{V}+$ is +5 V . As $\mathrm{V}+$ rises, the threshold increases slightly, so when $\mathrm{V}+$ reaches +12 V , the threshold is about 3.1V; above the TTL-guaranteed high-level minimum of 2.8 V , but still compatible with CMOS outputs.

Bipolar Supplies
These devices operate with bipolar supplies between $\pm 3.0 \mathrm{~V}$ and $\pm 8 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their sum cannot exceed the absolute maximum rating of +17 V .

Single Supply

These devices operate from a single supply between +3 V and +16 V when V - is connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually "work" with a single supply at near or below +1.7 V , although as supply voltage decreases, switch on-resistance and switching times become very high.

Overvoltage Protection
Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs (NO) and by COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).
Adding diodes reduces the analog signal range to one diode drop below V + and one diode drop above V -, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between $\mathrm{V}+$ and V should not exceed 17V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground.

Figure 1. Overvoltage Protection Using External Blocking Diodes

High-Frequency Performance
In 50Ω systems, signal response is reasonably flat up to 50 MHz (see Typical Operating Characteristics). Above 20 MHz , the on response has several minor peaks which are highly layout dependent. The problem is not turning the switch on, but turning it off. The offstate switch acts like a capacitor, and passes higher frequencies with less attenuation. At 10 MHz , off isolation is about -45 dB in 50Ω systems, becoming worse (approximately 20 dB per decade) as frequency increases. Higher circuit impedances also make off isolation worse. Adjacent channel attenuation is about 3dB above that of a bare IC socket, and is entirely due to capacitive coupling.

Low-Voltage, CMOS Analog Multiplexers/Switches

V- = OV FOR SINGLE-SUPPLY OPERATION.
REPEAT TEST FOR EACH SECTION.

Figure 2. Address Transition Time

Low-Voltage, CMOS Analog Multiplexers/Switches

V- = OV FOR SINGLE-SUPPLY OPERATION.
REPEAT TEST FOR EACH SECTION.

Figure 3. Enable Switching Time

Low-Voltage, CMOS Analog Multiplexers/Switches

Figure 4. Break-Before-Make Interval

Δ VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE transfer error a when the channel turns off.
$Q=\Delta$ OOUT XCL

Figure 5. Charge Injection

Low-Voltage, CMOS Analog Multiplexers/Switches

Figure 6. Off-Isolation, On-Loss, and Crosstalk

Figure 7. NO/COM Capacitance

Low-Voltage, CMOS Analog Multiplexers/Switches

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4051AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4051AESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4051AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4051AMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP**
MAX4051CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4051CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4051CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4051C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4051EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4051ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4051EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4051MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mathrm{CERDIP**}$
MAX4052ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4052ACSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4052ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4052AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4052AESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4052AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4052AMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP**
MAX4052CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4052CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4052CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4052C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4052EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4052ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4052EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4052MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mathrm{CERDIP**}$

PART	TEMP RANGE	PIN-PACKAGE
MAX4053ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4053ACSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4053ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4053AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4053AESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4053AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4053AMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP**
MAX4053CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4053CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4053CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4053C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\star}$
MAX4053EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4053ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4053EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4053MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP**

* Contact factory for dice specifications.
** Contact factory for availability.

Chip Information
TRANSISTOR COUNT: 161
SUBSTRATE CONNECTED TO V+.

Low-Voltage, CMOS Analog Multiplexers/Switches

. go to www.maxim-ic.com/packages.)

Low-Voltage, CMOS Analog Multiplexers/Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

MAX4051A

Part Number Table

Notes:

1. See the MAX4051A QuickView Data Sheet for further information on this product family or download the MAX4051A full data sheet (PDF, 376kB)
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR	Temp	RoHS/Lead-Free? Materials Analysis
MAX4051AMJE			Ceramic DIP;16 pin;.300" Dwg: 21-0045A (PDF) Use pkgcode/variation: J16-3*	-55 C to +125 C	RoHS/Lead-Free: No Materials Analysis
MAX4051AC/D					RoHS/Lead-Free: No
MAX4051ACPE+			PDIP;16 pin;.300" Dwg: 21-0043D (PDF) Use pkgcode/variation: P16+1*	OC to +70C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051ACPE			PDIP;16 pin;.300" Dwg: 21-0043D (PDF) Use pkgcode/variation: P16-1*	0C to +70C	RoHS/Lead-Free: No Materials Analysis
MAX4051AEPE			PDIP;16 pin;.300" Dwg: 21-0043D (PDF) Use pkgcode/variation: P16-1*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX4051ACEE+			QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16+1*	OC to +70C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051ACEE+T			QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16+1*	0 C to +70C	RoHS/Lead-Free: Yes Materials Analysis

MAX4051ACEE	QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16-1*	0 C to +70C	RoHS/Lead-Free: No Materials Analysis
MAX4051ACEE-T	QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16-1*	0 C to +70C	RoHS/Lead-Free: No Materials Analysis
MAX4051AEEE+	QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16+1*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051AEEE-T	QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16-1*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX4051AEEE	QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16-1*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX4051AEEE+T	QSOP;16 pin;.150" Dwg: 21-0055F (PDF) Use pkgcode/variation: E16+1*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051ACSE+T	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16+2*	0 C to +70C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051ACSE+	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16+2*	0 C to +70C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051ACSE	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16-2*	0 C to +70C	RoHS/Lead-Free: No Materials Analysis
MAX4051ACSE-T	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16-2*	0 C to +70C	RoHS/Lead-Free: No Materials Analysis
MAX4051AESE	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16-2*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX4051AESE+	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16+2*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051AESE+T	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16+2*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX4051AESE-T	SOIC;16 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S16-2*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis

Didn't Find What You Need?

