
SCES159E - DECEMBER 1998 - REVISED FEBRUARY 2000

- **Member of the Texas Instruments** Widebus™ Family
- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- **DOC**[™] (Dynamic Output Control) Circuit **Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation**
- **Dynamic Drive Capability Is Equivalent to** Standard Outputs With IOH and IOI of \pm 24 mA at 2.5-V V_{CC}

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- Ioff Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown** Resistors
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOC™) Circuitry Technology and Applications, literature number SCEA009.

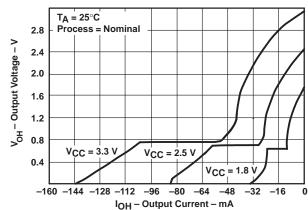


Figure 1. Output Voltage vs Output Current

This 16-bit edge-triggered D-type flip-flop is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVCH16374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels at the data (D) inputs. OE can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

DOC, EPIC, and Widebus are trademarks of Texas Instruments Incorporated.

16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCES159E - DECEMBER 1998 - REVISED FEBRUARY 2000

description (continued)

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

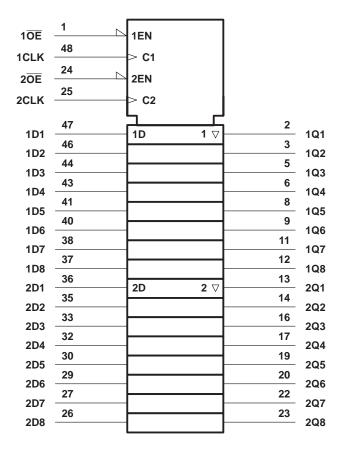
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVCH16374 is characterized for operation from -40°C to 85°C.

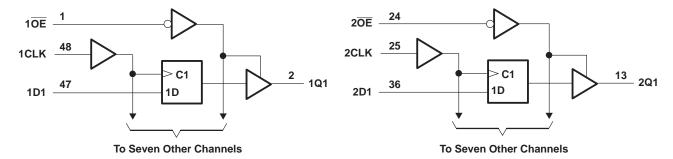
terminal assignments

DGG OR DGV PACKAGE (TOP VIEW)


1 <u>OE</u>	Н	1	\bigcup	48	Һ	1CLK
	_	1				
1Q1						1D1
1Q2						1D2
GND						GND
1Q3					_	1D3
1Q4						1D4
V_{CC}	Ц	7				V_{CC}
1Q5						1D5
1Q6				40	р	1D6
GND	q	10		39		GND
1Q7	q	11		38		1D7
1Q8				37	1	1D8
2Q1	q	13		36	1	2D1
2Q2						2D2
GND	d	15				GND
2Q3	d	16				2D3
2Q4	d	17				2D4
V_{CC}	d	18		31		V_{CC}
2Q5	d	19		30	þ	2D5
2Q6	q	20		29	1	2D6
GND	D	21		28		GND
2Q7	d	22				2D7
2Q8						2D8
2OE	_			25	_	2CLk
	ı					

FUNCTION TABLE (each 8-bit flip-flop)

	INPUTS		ОИТРИТ
OE	CLK	D	Q
L	1	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	Х	Χ	Z



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCES159E - DECEMBER 1998 - REVISED FEBRUARY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
Storage temperature range, T _{sta}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SCES159E - DECEMBER 1998 - REVISED FEBRUARY 2000

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT			
V/00	Supply voltage	Operating	1.4	3.6	V			
VCC	Supply voltage	Data retention only	1.2		l v			
		V _{CC} = 1.2 V	VCC					
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	$0.65 \times V_{CC}$					
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7					
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	ta retention only ta retention only C = 1.2 V C = 1.4 V to 1.6 V C = 1.65 V to 1.95 V C = 2.3 V to 2.7 V C = 1.65 V to 1.95 V C = 1.65 V to 1.95 V C = 1.4 V to 1.6 V C = 1.4 V to 1.6 V C = 1.4 V to 1.6 V C = 1.65 V to 1.95 V C = 2.3 V to 2.7 V C = 3 V to 3.6 V C = 2.3 V to 2.7 V C = 3 V to 3.6 V C = 2.3 V to 3.6 V C = 2.3 V to 3.6 V C = 3 V to 3.6 V C = 1.4 V to 1.6 V C = 2.3 V to 3.6 V C = 1.4 V to 1.95 V C = 2.3 V to 3.6 V C = 3 V to 3.6 V C = 1.4 V to 1.6 V C = 3 V to 3.6 V C = 1.4 V to 1.6 V C = 1.4 V to 1.6 V C = 1.4 V to 1.6 V C = 1.4 V to 1.95 V C = 1.4 V to 1.95 V C = 1.4 V to 1.95 V C = 1.4 V to 3.6 V C = 3 V to 3.6 V C = 1.4 V to 3.6 V					
		V _{CC} = 1.2 V		GND				
V _{IL}	Low-level input voltage	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.35 × V _{CC}					
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.8				
٧ _I	Input voltage		0	3.6	V			
Vo	Output voltage	Active state	0	VCC	V			
٧٥	Output voltage	3-state	0	3.6	V			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2				
laua	Static high-level output current [†]	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	1.95 V —4					
IOHS	Static high-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-12				
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2				
lols	Static low-level output current [†]	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		4				
	Static low-level output current	V _{CC} = 2.3 V to 2.7 V		8	mA			
		V _{CC} = 3 V to 3.6 V		12				
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V			
TA	Operating free-air temperature		-40	85	°C			

T Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number **SCEA009**.

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES159E - DECEMBER 1998 - REVISED FEBRUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	VCC	MIN TYPT MAX	UNIT	
		I _{OHS} = -100 μA	1.4 V to 3.6 V	V _{CC} -0.2		
		$I_{OHS} = -2 \text{ mA}, \qquad V_{IH} = 0.91$	V 1.4 V	1.05]	
Vон		$I_{OHS} = -4 \text{ mA}, \qquad V_{IH} = 1.07$	V 1.65 V	1.2	V	
		$I_{OHS} = -8 \text{ mA}, \qquad V_{IH} = 1.7 \text{ V}$	2.3 V	1.75		
		$I_{OHS} = -12 \text{ mA}, \qquad V_{IH} = 2 \text{ V}$	3 V	2.3		
		I _{OLS} = 100 μA	1.4 V to 3.6 V	0.2		
		$I_{OLS} = 2 \text{ mA}, \qquad V_{IL} = 0.49 ^{\circ}$	V 1.4 V	0.4		
VOL		$I_{OLS} = 4 \text{ mA}, \qquad V_{IL} = 0.57 \text{ V}$	V 1.65 V	0.45	V	
		$I_{OLS} = 8 \text{ mA}, \qquad V_{IL} = 0.7 \text{ V}$	2.3 V	0.55		
		$I_{OLS} = 12 \text{ mA}, \qquad V_{IL} = 0.8 \text{ V}$	3 V	0.7		
II	Control inputs	$V_I = V_{CC}$ or GND	3.6 V	±2.5	μΑ	
		V _I = 0.57 V	1.65 V	25		
I _{BHL} ‡		V _I = 0.7 V	2.3 V	45	μΑ	
		V _I = 0.8 V	3 V	75		
I _{BHH} §		V _I = 1.07 V	1.65 V	-25		
		V _I = 1.7 V	2.3 V	-45	μА	
		V _I = 2 V	3 V	- 75		
I _{BHLO} ¶			1.95 V	200	μА	
		$V_I = 0$ to V_{CC}	2.7 V	300		
			3.6 V	500		
			1.95 V	-200		
Івнно	D [#]	$V_I = 0$ to V_{CC}	2.7 V	-300	μΑ	
			3.6 V	-500		
I _{off}		V _I or V _O = 3.6 V	0	±10	μА	
loz		$V_O = V_{CC}$ or GND	3.6 V	±10	μА	
Icc		$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	40	μА	
	Control innuts		2.5 V			
<u> </u>	Control inputs	W. Waan CND	3.3 V		_	
Ci	Data innuta	$V_I = V_{CC}$ or GND	2.5 V		pF	
	Data inputs		3.3 V			
	Outputo	Va – Va a or CND	2.5 V			
Co	Outputs	$V_O = V_{CC}$ or GND	3.3 V		pF	

[†] Typical values are measured at $T_A = 25$ °C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

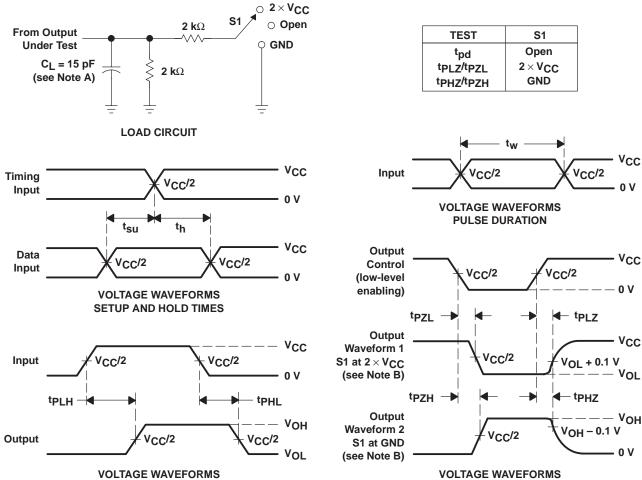
[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 $[\]P$ An external driver must source at least I_{BHLO} to switch this node from low to high.

[#]An external driver must sink at least IBHHO to switch this node from high to low.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

		VCC =	1.2 V	V _{CC} =	1.5 V 1 V	V _{CC} = ± 0.1		V _{CC} =		V _{CC} =		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency											MHz
t _W	Pulse duration, CLK high or low											ns
t _{su}	Setup time, data before CLK↑											ns
t _h	Hold time, data after CLK↑											ns


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.2 V	V _{CC} =	1.5 V 1 V	V _{CC} =		V _{CC} =		V _{CC} =	3.3 V 3 V	UNIT
	(INFOT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}												MHz
^t pd	CLK	Q										ns
t _{en}	ŌĒ	Q										ns
^t dis	ŌE	Q										ns

operating characteristics, T_A = 25°C

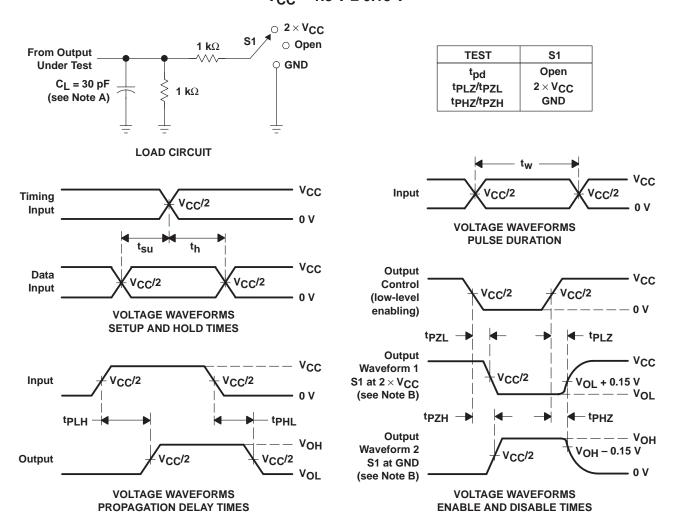
PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
	TANAMETER		TEGT GONDITIONS	TYP	TYP	TYP	ONIT
	Power dissipation	Outputs enabled	Cı = 0. f = 10 MHz				pF
Cpd	capacitance	Outputs disabled	$C_L = 0$, $f = 10 MHz$				pΓ

PRODUCT PREVIEW

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.

ENABLE AND DISABLE TIMES

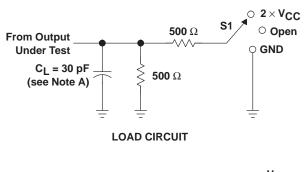

- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.

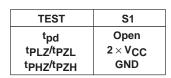
PROPAGATION DELAY TIMES

- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$



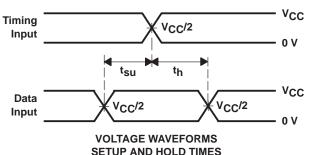

NOTES: A. C_L includes probe and jig capacitance.

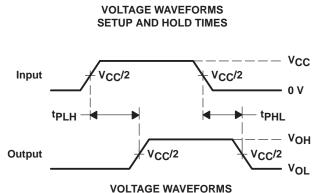
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

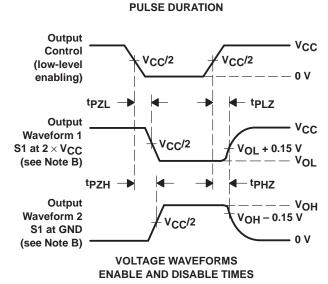
PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V

V_{CC}/2


VOLTAGE WAVEFORMS


Input

VCC

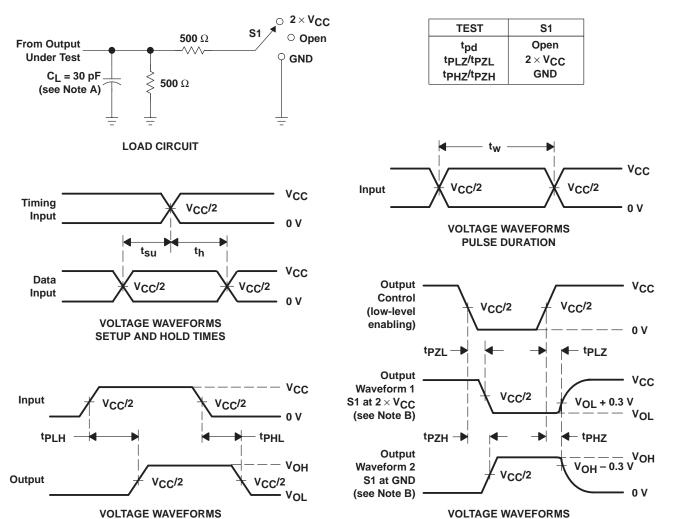

0 V

V_{CC}/2

PROPAGATION DELAY TIMES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpz and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.


Figure 4. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION V_{CC} = 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpHZ are the same as tdis.

PROPAGATION DELAY TIMES

- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms