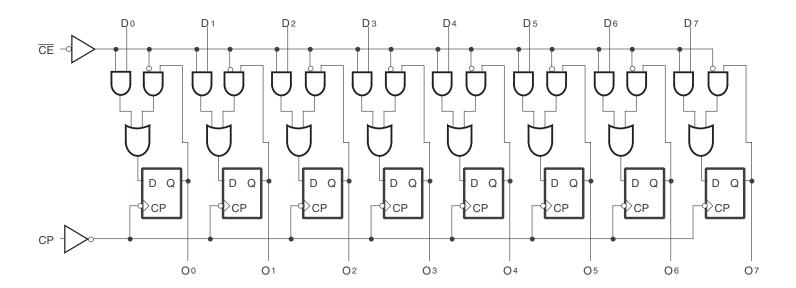


FAST CMOS OCTAL D FLIP-FLOP WITH CLOCK ENABLE

IDT74FCT377AT/CT/DT

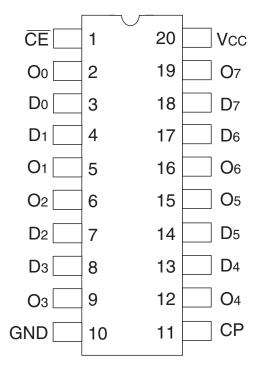

FEATURES:

- · A, C, and D grades
- Low input and output leakage ≤1µA (max.)
- · CMOS power levels
- · True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - -VOL = 0.3V (typ.)
- High Drive outputs (-15mA loн, 48mA loL)
- Meets or exceeds JEDEC standard 18 specifications
- · Power off disable outputs permit "live insertion"
- · Available in SOIC and QSOP packages

DESCRIPTION:

The IDT74FCT377T is an octal D flip-flop built using an advanced dual metal CMOS technology. The IDT74FCT377T has eight edge-triggered, D-type flip-flops with individual D inputs and O outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously when the Clock Enable ($\overline{\text{CE}}$) is low. The register is fully edge-triggered. The state of each D input, one set-up time before the low-to-high clock transition, is transferred to the corresponding flip-flop's O output. The $\overline{\text{CE}}$ input must be stable only one set-up time prior to the low-to-high transition for predictable operation.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 2009

PIN CONFIGURATION

SOIC/ QSOP **TOP VIEW**

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	٧
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description		
D0 – D7	Data Inputs		
CE Clock Enable (Active LOW)			
Oo – O7 Data Outputs			
СР	Clock Pulse Input		

FUNCTION TABLE(1)

		Inputs	Outputs	
Operating Mode	СР	CE	D	0
Load "1"	↑	I	h	Н
Load "0"	↑	I	1	L
Hold	↑	h	Х	No Change
	Н	Н	Х	No Change

NOTE:

1. H = HIGH Voltage Level

h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition

L = LOW Voltage Level

I = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition

X = Don't Care

↑ = LOW-to-HIGH Clock Transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40° C to $+85^{\circ}$ C, VCC = 5.0V $\pm 5\%$

Symbol	Parameter	Test	Test Conditions ⁽¹⁾		Тур.(2)	Max.	Unit
ViH	Input HIGH Level	Guaranteed Logic HIGH Le	Guaranteed Logic HIGH Level		_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Lev	rel	_	_	0.8	V
Іін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	_	_	±1	μА
lı∟	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	_	_	±1	μА
lı	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (Ma	ix.)	_	_	±1	μA
Vik	Clamp Diode Voltage	Vcc = Min., IN = -18mA		_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GND	Vcc = Max. ⁽³⁾ , Vo = GND		-120	-225	mA
Vон	Output HIGH Voltage	Vcc = Min.	Iон = -8mA	2.4	3.3	_	V
		VIN = VIH or VIL	IOH = -12mA	2	3	_	
Vol	Output LOW Voltage	Vcc = Min.	IoL = 48mA	_	0.3	0.5	V
		VIN = VIH or VIL					
loff	Input/Output Power Off	Vcc = 0V, Vin or Vo - 4.5V	Vcc = 0V, Vin or Vo - 4.5V		_	±1	μА
	Leakage ⁽⁵⁾						
VH	Input Hysteresis	_		_	200		mV
Icc	Quiescent Power	Vcc = Max.	Vcc = Max.		0.01	1	mA
	Supply Current	VIN = GND or Vcc					

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. The test limit for this parameter is $\pm 5\mu A$ at Ta = -55°C.
- 5. This parameter is guaranted but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Тур.(2)	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	VCC = Max. $VIN = 3.4V(3)$		_	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max., Outputs Open CE = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	0.15	0.25	mA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fcP = 10MHz	VIN = VCC VIN = GND	_	1.5	3.5	mA
		CE = GND One Bit Toggling fi = 5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	2	5.5	
		Vcc = Max., Outputs Open fcP = 10MHz, 50% Duty Cycle	VIN = VCC VIN = GND	_	3.8	7.3 ⁽⁵⁾	
		CE = GND Eight Bits Toggling fi = 2.5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	6	16.3 ⁽⁵⁾	

NOTES:

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of Δ lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $Ic = Icc + \Delta Icc DhNt + Iccd (fcp/2 + fiNi)$

Icc = Quiescent Current

 ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

 $\mathsf{DH} = \mathsf{Duty} \; \mathsf{Cycle} \; \mathsf{for} \; \mathsf{TTL} \; \mathsf{Inputs} \; \mathsf{High}$

NT = Number of TTL Inputs at DH

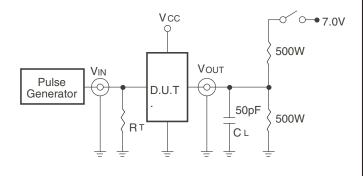
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Output Frequency

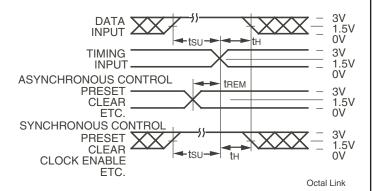
 N_i = Number of Outputs at fi

All currents are in milliamps and all frequencies are in megahertz.

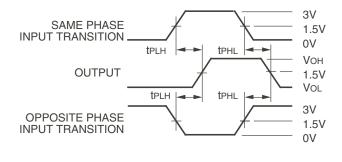

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			74FCT377AT		74FCT377AT 74FCT377CT		74FCT377DT		╛	
Symbol	Parameter	Condition ⁽¹⁾	Min.(2)	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit	
tplh	Propagation Delay	CL = 50pF	2	7.2	2	5.2	2	4.4	ns	
t _{PHL}	CP to Qx	$RL = 500\Omega$								
tsu	Set-up Time HIGH or LOW		2	_	2	_	2	_	ns	
	Dx to CP									
tH	Hold Time HIGH or LOW		1.5	_	1.5	_	1	_	ns	
	Dx to CP									
tsu	Set-up Time HIGH or LOW		3.5	_	3.5	_	3	_	ns	
	CE to CP									
tH .	Hold Time HIGH or LOW		1.5	_	1.5	_	0	_	ns	
	CE to CP									
tw	CP Pulse Width HIGH or LOW		8	_	6	_	3		ns	
tw	CP Pulse Width HIGH or LOW		8	_	6	_	3		_	

NOTES:


- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

TEST CIRCUITS AND WAVEFORMS



Test Circuits for All Outputs

Octal Link

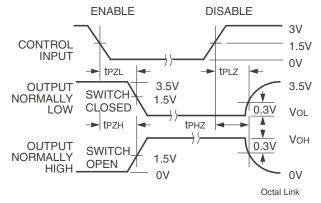
Set-Up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

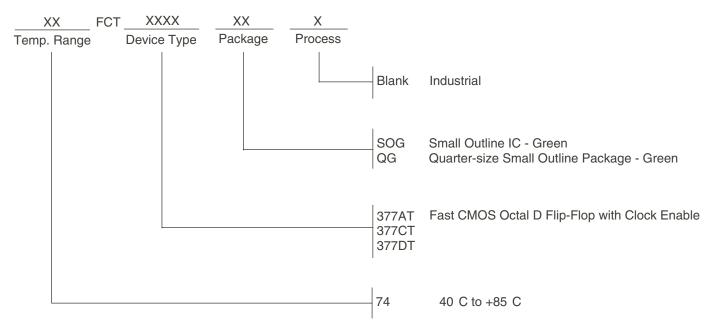
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Octal Link


Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

Octal Link

ORDERING INFORMATION

Datasheet Document History

10/03/09 Pg. 6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/