

3.3V, 20-Bit, 2-Port NanoSwitchTM

Features

- · Near-Zero propagation delay
- 5-ohm switches connect inputs to outputs
- Fast Switching Speed: 4.5ns (max.)
- · Flow-through pinout
- VCC Operating Range: 3.0V to 3.6V
- Industrial operating temperature: -40°C to +85°C
- Packaging (Pb-free & Green available):
 - 48-pin 150-mil wide plastic BQSOP (B)
 - 48-pin 240-mil wide plastic TSSOP (A)
 - 48-pin 300-mil wide plastic SSOP (V)

Block Diagram

Truth Table⁽¹⁾

Inputs		Inputs/Outputs		
1 OE	2 OE	1A,1B	2A,2B	
L	L	1A = 1B	2A = 2B	
L	Н	1A = 1B	Z	
Н	L	Z	2A = 2B	
Н	Н	Z	Z	

Description

Pericom Semiconductor's PI3B16210 is configured as a 3.3 volt 20-bit, 2-port bus switch designed with a low On-Resistance (5-ohms) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. Switches are turned ON by the Bus Enable (xOE) input signal.

Pin Configuration

rin Comiguration	
NC [1 O	48 1 10E
1A1 🗖 2	47 🛘 2 0 E
1A2 ☐ 3	46 🛘 1B1
1A3 ☐ 4	45 🛘 1B2
1A4 ☐ 5	44 🛘 1B3
1A5 ☐ 6	43 🛘 1B4
1A6 ☐ 7	42 🛘 1B5
GND ☐ 8	41 GND
1A7 🗖 9	40 🛘 1B6
1A8 ☐ 10	39 🛘 1B7
1A9 ☐ 11	38 🛘 1B8
1A₁0 ☐ 12	37 🛘 1B9
2A1 🛘 13	36 🛘 1B10
2A2 ☐ 14	35 🛘 2B1
Vcc ☐ 15	34 🛘 2B2
2A3 ☐ 16	33 🛘 2B3
GND ☐ 17	32 GND
2A4 ☐ 18	31 🛘 2B4
2A5 ☐ 19	30 2B ₅
2A6 ☐ 20	29 🛘 2B6
2A7 ☐ 21	28 🛘 2B7
2A8 🛘 22	27 🛘 2B8
2A9 ☐ 23	26 🛘 2B9
2A10 ☐ 24	25 2B ₁₀

Pin Description

Description
Bus Enable Inputs (Active LOW)
Bus A
Bus B
No Connect – Do Not Connect

Note:

- 1. H = High Voltage Level
- 2. L = Low Voltage Level
- Hi-Z = High Impedance

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	0°C to +85°C
Supply Voltage Range	0.5V to +4.6V
DC Input Voltage	
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permenant damage to the device. This is a stress rating only and functional operation of the device at these or any of the other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the operating range, $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{CC} = 3.0\text{V}$ to 3.6V)

Parameters	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max.	Units
$V_{ m IH}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$V_{ m IL}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
I_{I}	Input Current	$V_{CC} = Max$, $V_{IN} = V_{CC}$ or GND			±1	
		$V_{CC} = 0V$, $V_{IN} = V_{CC}$			±1	μΑ
I _{OZ}	High Impedance Output	$0 \le A, B \le V_{CC}$			±1	1
	Current					
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.7	-1.2	V
R _{ON}	Switch ON Resistance ⁽³⁾	$V_{CC} = 3V, V_{IN} = 0.0V$		5	8	
		$I_{ON} = 24 \text{mA}$, 64mA				Ω
		$V_{CC} = 3V$, $V_{IN} = 2.4V$, $I_{ON} = 15mA$		10	15	

Note:

- 1. For Max. or Min. conditiopons, use appropriate value specified under Electrical Characteristics for the applicable dsevice type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximu8m loading.
- 3. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on thhe two (A,B) pins.

Capacitance ($TA = 25^{\circ}C$. f=1 MHz)

Parameters	Description	Test Conditions ⁽¹⁾	Тур	Units
C _{IN}	Input Capacitance		3	
C _{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	8.5	pF
Con	A/B Capacitance, Switch On		17.0	

Note:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND$ or V_{CC}			10	uA
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = 3.0V^{(3)}$			750	uA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} = Max. A & B Pins Open xOE = GND Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input (control inputs only); A and B pins do not contribute to I_{CC}.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or Dc currents as they transistion. This parameteer is not tested, but is guranteed by designed.

Switching Characteristics over Operating Range

Parameters	Description	Conditions	Com.		Units
			Min.	Max.	
t _{PLH}	Propagation Delay (1, 2)	$C_L = 50 pF$		0.25	
$t_{ m PHL}$	Ax to Bx or Bx to Ax	$R_L = 500\Omega$		0.25	
t_{PZH}	Bus Enable Time	$C_L = 50 pF$	1	4.5	ns
t_{PZL}	$x\overline{OE}$ to Ax or Bx	$R_L = 500\Omega$			
$t_{ m PHZ}$	Bus Disable Time	$R = 500\Omega$	1	5.0	
t_{PLz}	$x\overline{OE}$ to Ax or Bx		1	3.0	

Notes:

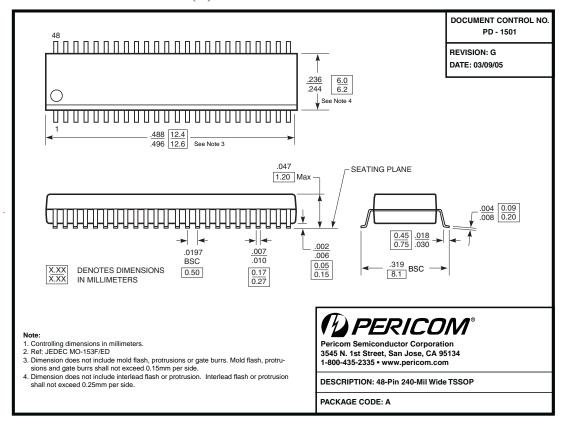
- 1. This parameter is guaranteed but not tested on Propagation Delays.
- 2. The bus switch contributes no propogational delay other than the On-Resistance of the switch and load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much swmaller than the rise/fall times of typical. driving signals, it adds very little propogational delay to the system. Propogational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Applications Information

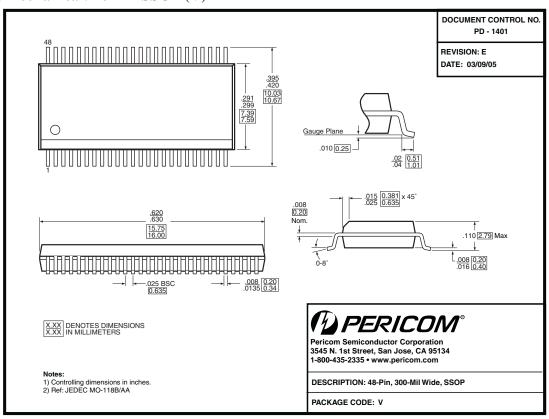
Logic Inputs

The logic control inputs can be driven up to +3.6 regardless of the supply voltage. For example, given a +3.3V suppply, IN may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail[®] minimizes power consumption.

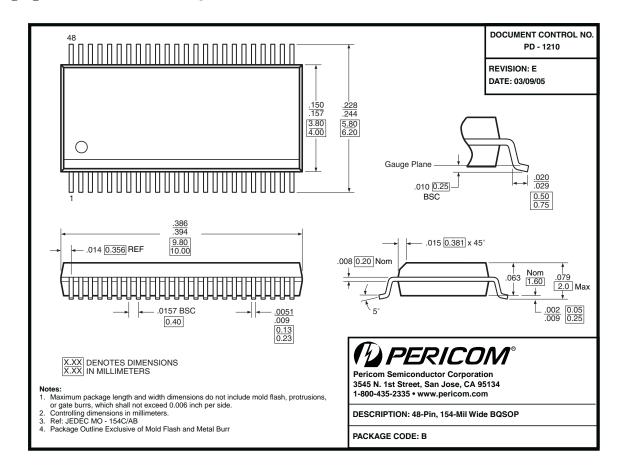
Power-Supply Sequencing and Hot-Plug Information


Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd


06-0341 3 PS8193G 01/14/07

Packaging Mechanical: 48-Pin TSSOP (A)



Packaging Mechanical: 48-Pin SSOP (V)

Packaging Mechanical: 48-Pin BQSOP (B)

Ordering Information

Ordering Code	Package Code	Package Description
PI3B16210A	A	48-Pin TSSOP
PI3B16210AE	A	Pb-free & Green, 48-pin TSSOP
PI3B16210V	V	48-pin SSOP
PI3B16210B	В	48-pin BQSOP

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com