

THIS SPEC IS OBSOLETE

Spec No: 38-05169

Spec Title: CY7C1049B 512K x 8 Static RAM

Sunset Owner: Anuj Chakrapani (AJU)

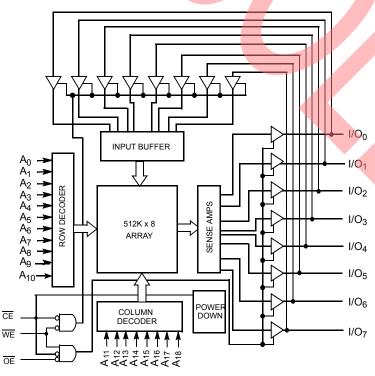
Replaced by: None

512K x 8 Static RAM

Features

- · High speed
 - t_{AA} = 12 ns
- · Low active power
 - 1320 mW (max.)
- Low CMOS standby power (Commercial L version)
 - 2.75 mW (max.)
- 2.0V Data Retention (400 µW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in Pb-free and non Pb-free 36-Lead (400-Mil) Molded SOJ

Functional Description[1]


The CY7C1049B is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an <u>acti</u>ve LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is <u>ac</u>complished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O0 through I/O7) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable (<u>CE</u>) and Output Enable (<u>OE</u>) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1049B is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.

Logic Block Diagram

Pin Configuration

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

			-12	-15	-17
Maximum Access Time (ns)	12	15	17		
Maximum Operating Current (mA)			240	220	195
Maximum CMOS Standby	Commercial	Commercial		8	8
Current (mA)	Industrial		-	-	-
	Commercial	L	-	-	0.5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ______65°C to +150°C

Ambient Temperature with

Supply Voltage on V_{CC} to Relative GND^[2] –0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State^[2]-0.5V to V_{CC} + 0.5V

DC Input Voltage^[2].....-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

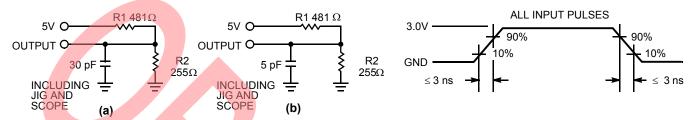
Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	–40°C to +85°C	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditi	ons	-	12	-	15	-	17	
				Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4	.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage[2]			-0.3	0.8	-0.3	0.8	-0.3	0.3	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	– 1	+1	μΑ	
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$	-1	+1	-1	+1	-1	+1	μА	
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$			240		220		195	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$			40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		8		8		8	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		-		-		0.5	mA
			Ind'I		-		-		8	mA

Document Number: 38-05169 Rev. *C

Page 2 of 9


^{2.} Minimum voltage is-2.0V for pulse durations of less than 20 ns.

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT O 1.73V 1.73V

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

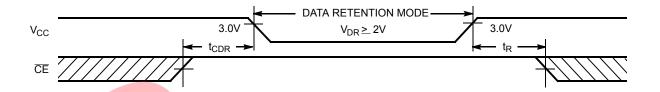
Switching Characteristics Over the Operating Range^[4]

			12	-1	5	-1	17	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	12		15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
Write Cycle	[8, 9]							
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		12		ns
t _{AW}	Address Set-Up to Write End	10		12		12		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		12		ns
t _{SD}	Data Set-Up to Write End	7		8		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

Data Retention Characteristics Over the Operating Range

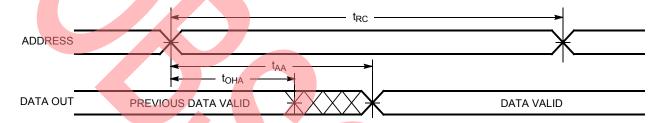
Parameter	Description			Conditions ^[11]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0		V
I _{CCDR}	Data Retention Current Com'l L			$V_{CC} = V_{DR} = 2.0V$, $CE \ge V_{CC} - 0.3V$		200	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			CE \ge V _{CC} - 0.3V V _{IN} \ge V _{CC} - 0.3V or V _{IN} \le 0.3V	0		ns
t _R ^[10]	Operation Recovery Time			*IIV = *CC	t _{RC}		ns

Notes:

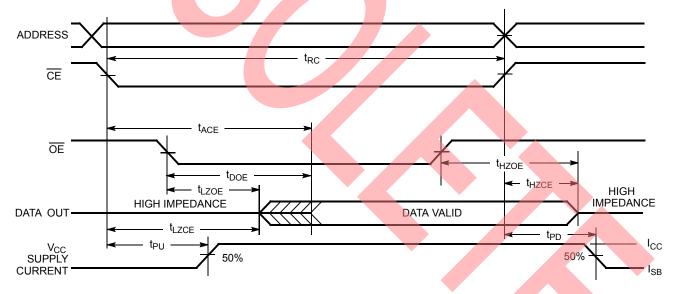

- 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 5. This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. toower time has to be provided initially before a read/write operation is started.
- 6. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

- 10. $t_r \le 3$ ns for all the speeds 11. No input may exceed $V_{CC} + 0.5V$.

Document Number: 38-05169 Rev. *C Page 4 of 9



Data Retention Waveform



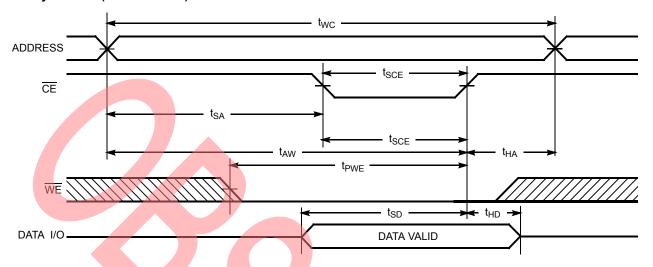
Switching Waveforms

Read Cycle No. 1^[12, 13]

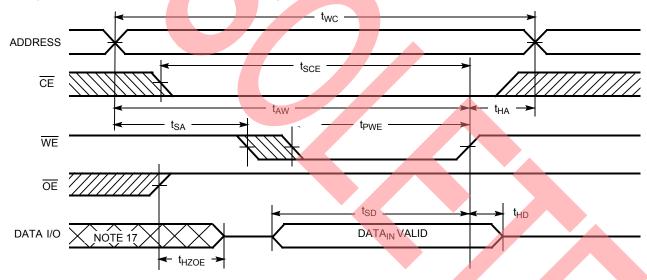
Read Cycle No. 2 (OE Controlled)[13, 14]

Notes:

- 12. <u>Dev</u>ice is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}.


 13. <u>WE</u> is HIGH for read cycle.

 14. Address valid prior to or coincident with <u>CE</u> transition LOW.



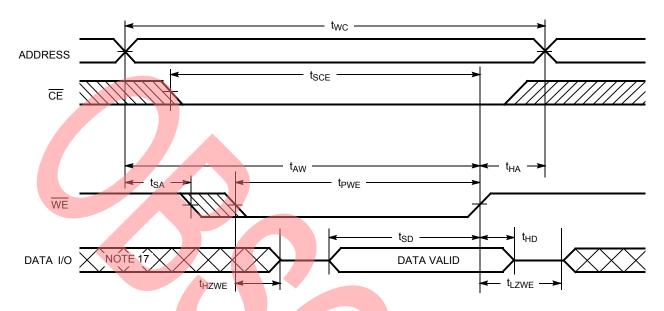
Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[15, 16]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[15, 16]

Notes:

15. Data I/O is high impedance if $\overline{\text{OE}} = \underline{V}_{\text{IH}}$.

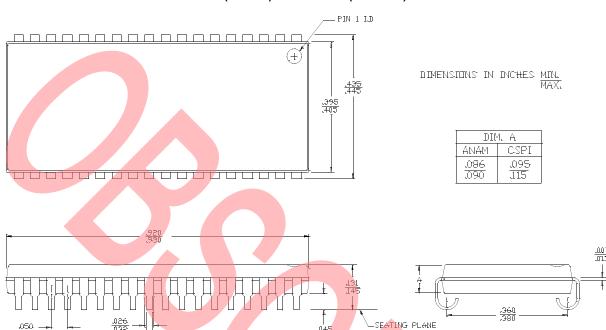

16. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

17. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16]

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1049B-12VC	51-85090	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049B-12VXC		36-Lead (400-Mil) Molded SOJ (Pb-free)	
15	CY7C1049B-15VC		36-Lead (400-Mil) Molded SOJ	
	CY7C1049B-15VXC	†	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049B-15VI	İ	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049B-15VXI	İ	36-Lead (400-Mil) Molded SOJ (Pb-free)	
17	CY7C1049BL-17VC	1	36-Lead (400-Mil) Molded SOJ	Commercial

51-85090-*B

Package Diagram

36-lead (400-Mil) Molded SOJ (51-85090)

Document History Page

	Document Title: CY7C1049B 512K x 8 Static RAM Document Number: 38-05169						
REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change			
**	110209	12/02/01	SZV	Change from Spec number: 38-00937 to 38-05169			
*A	116465	09/16/02	CEA	Add applications foot note to data sheet, page 1			
*B	498501	See ECN NXR		Removed 20 ns and 25 ns speed bin Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated the Ordering Information Table			
*C	2895678	03/19/2010	AJU	Inactive parts; Obsolete data sheet			

All product and company names mentioned in this document may be the trademarks of their respective holders.

