
Vishay High Power Products

Schottky Rectifier, 2 x 20 A

SHA

PRODUCT SUMMARY						
I _{F(AV)}	2 x 20 A					
V _R	45 V					
I _{RM}	85 mA at 125 °C					

FEATURES

- 150 °C T_J operation
- Center tap TO-247 package
- Very low forward voltage drop
- High frequency operation

- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free ("PbF" suffix)
- Designed and qualified for industrial level

DESCRIPTION

The MBR4045WTPbF center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES							
I _{F(AV)}	Rectangular waveform (per device)	40	•						
I _{FRM}	$T_{C} = 125 \ ^{\circ}C \ (per \ leg)$	40	A						
V _{RRM}		45	V						
I _{FSM}	$t_p = 5 \ \mu s \ sine$	1020	A						
V _F	20 Apk, T _J = 125 °C	0.56	V						
TJ	Range	- 55 to 150	°C						

VOLTAGE RATINGS								
PARAMETER	SYMBOL	MBR4045WTPbF	UNITS					
Maximum DC reverse voltage	V _R	45						
Maximum working peak reverse voltage	V _{RWM}	45 V						

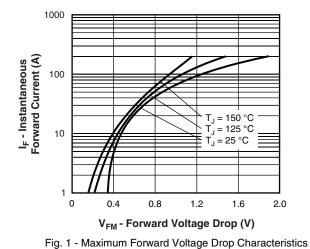
ABSOLUTE MAXIMUM RATINGS									
PARAMETER		SYMBOL	TEST COND	ITIONS	VALUES	UNITS			
Maximum average per leg		I _{F(AV)}	$T_{C} = 125 \text{ °C}, 50 \text{ % duty cycle, rectangular waveform}$		20				
forward current	forward current per device		$1_{\rm C} = 125$ C, 50 % duty cycle, 1	40					
Peak repetitive forward current per leg		I _{FRM}	Rated V _R , square wave, 20 kHz, T _C = 125 $^{\circ}$ C		40	А			
Maximum peak one cycle non-repetitive surge current per leg See fig. 7			Following any rated load condition and with rated	1020					
		IFSM		V_{RRM} applied	265				
Non-repetitive avalanche energy per leg		E _{AS}	T _J = 25 °C, I _{AS} = 3 A, L = 4.40 mH		20	mJ			
Repetitive avalanche current per leg		I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		3	А			

* Pb containing terminations are not RoHS compliant, exemptions may apply

MBR4045WTPbF

Vishay High Power Products Schottky Rectifier, 2 x 20 A

ELECTRICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS				
		20 A	T _{.1} = 25 °C	0.59	V			
Maximum forward voltage drop	V _{FM} ⁽¹⁾	40 A	$1_{\rm J} = 25$ C	0.78				
Maximum forward voltage drop	V FM (*)	20 A	T 105 %C	0.56	v			
		40 A	T _J = 125 °C	0.72				
	I _{RM} ⁽¹⁾	T _J = 25 °C		1.75				
Maximum instantaneous reverse current		T _J = 100 °C	Rated DC voltage	50	mA			
		T _J = 125 °C		85				
Threshold voltage	V _{F(TO)}	T T maximum	T _J = T _J maximum -		V			
Forward slope resistance	r _t	IJ = IJ maximum			mΩ			
Maximum junction capacitance	CT	$V_R = 5 V_{DC}$ (test signal rar	900	pF				
Typical series inductance	L _S	Measured from top of term	7.5	nH				
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs				


Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction temperature	e range	TJ		- 55 to 150	°C			
Maximum storage temperature	e range	T _{Stg}		- 55 to 175	C			
Maximum thermal resistance, junction to case per package		R _{thJC}	DC operation		°C/W			
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.7	0/10			
				6	g			
Approximate weight	Approximate weight			0.21	oz.			
Mounting to you o	minimum			6 (5)	kgf ⋅ cm			
Mounting torque	maximum			12 (10)	(lbf ⋅ in)			
Device marking			Case style TO-247AC (JEDEC)	MBR40	045WT			

Schottky Rectifier, 2 x 20 A Vishay High Power Products

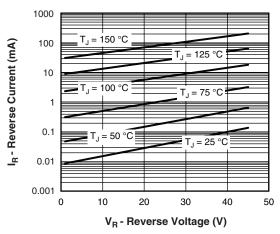


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

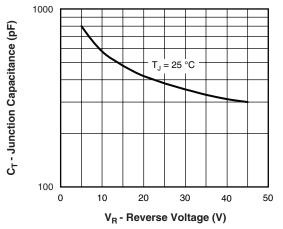


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

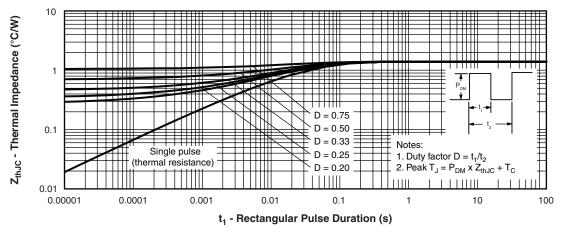
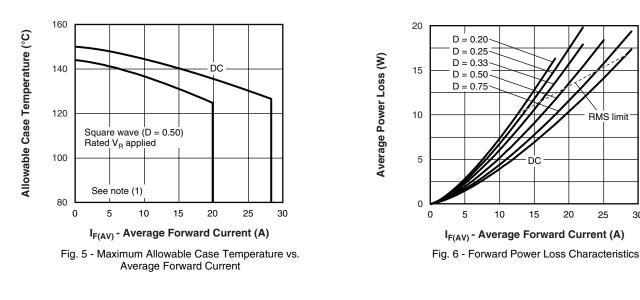
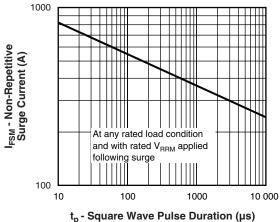




Fig. 4 - Maximum Thermal Impedance $Z_{thJC}\ Characteristics$

MBR4045WTPbF

Vishay High Power Products Schottky Rectifier, 2 x 20 A

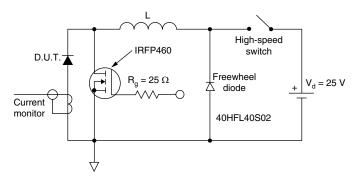


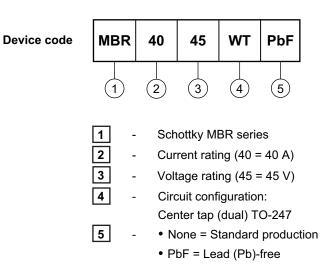
Fig. 8 - Unclamped Inductive Test Circuit

Note

- ⁽¹⁾ Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC}$;
 - $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \ \mathsf{x} \ \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \ \mathsf{x} \ \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{Rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

RMS limit

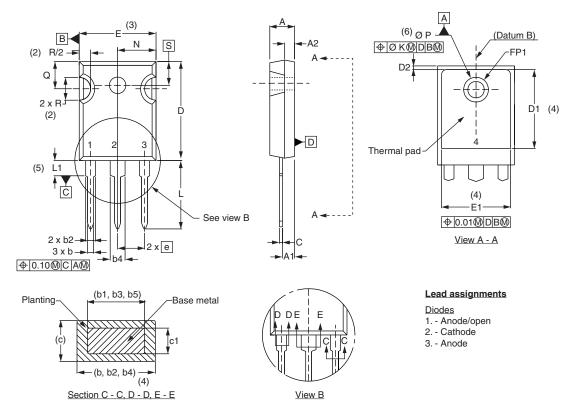
25


30

20

Schottky Rectifier, 2 x 20 A Vishay High Power Products

ORDERING INFORMATION TABLE


LINKS TO RELATED DOCUMENTS						
Dimensions	http://www.vishay.com/doc?95223					
Part marking information	http://www.vishay.com/doc?95226					
SPICE model	http://www.vishay.com/doc?95297					

Outline Dimensions

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		S INCHES		NOTES		SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STNIBOL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTES	STWBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.65	5.31	0.183	0.209			D2	0.51	1.30	0.020	0.051	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.50	2.49	0.059	0.098			E1	13.72	-	0.540	-	
b	0.99	1.40	0.039	0.055			e	5.46	BSC	0.215	BSC	
b1	0.99	1.35	0.039	0.053			FK	2.	54	0.0)10	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.37	0.065	0.094			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			Ν	7.62	BSC	0	.3	
b5	2.59	3.38	0.102	0.133			ΦP	3.56	3.66	0.14	0.144	
с	0.38	0.86	0.015	0.034			Φ P1	-	6.98	-	0.275	
c1	0.38	0.76	0.015	0.030			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	1.78	0.216	
D1	13.08	_	0.515	-	4		S	5.51	BSC	0.217	BSC	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1

⁽⁵⁾ Lead finish uncontrolled in L1

(6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c

Document Number: 95223

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.