..... Engineered solutions for the transient environment # TVS Transient Voltage Suppressors 1N5629 thru IN5665A #### DESCRIPTION **FEATURES** This specification sheet defines a series of Silicon Transient Suppressor (TVS) diodes used in applications where large voltage transients can permanently damage voltage sensitive components. The TVS is packaged in a hermetically sealed, glass-to-metal package. Screened parts to JAN and JANTX requirements of MIL-S-19500/500 are also available. TVS diodes are characterized by their high surge capability, extremely fast response time, and low impedance, (R,,). Because of the unpredictable nature of transients and the variation of the impedance with respect to these transients, impedance, per se, is not specified as a parametric value. However, a minimum voltage at low current conditions (V_{BR}) and a maximum clamping voltage (V_{C}) at a maximum peak pulse current is specified. In addition, a maximum clamping ratio is indicated. In some instances, the thermal effect (see V_C Clamping Voltage) may be responsible for 50 to 70 percent of the observed voltage differential when subjected to high current pulses or severe duty cycles, thus making a maximum impedance specification insignificant. Curves depicting clamping voltage vs. various current pulses are available from the factory. Extended power curves vs. pulse time are also available. This TVS series has a peak pulse power rating of 1500 watts for one millisecond and therefore can be used in applications where induced lightning on rural or remote transmission lines presents a hazard to electronic circuitry (ref: REA specification PE 60). The response time of the TVS clamping action is theoretically instantaneous (1 x 10⁻¹²sec), therefore, they can protect integrated circuits, MOS devices, hybrids, and other voltage-sensitive semiconductors and components. TVSs can also be used in series or parallel to increase the peak power ratings. This series of devices hasproven to be very effective as NEMP Suppressors. For the actual test results and application, send for report number AD9092661. This specification sheet is only one of many series of Transient Voltage Suppressors available from ProTek Devices. ### **MAXIMUM RATINGS** - 1500 watts of Peak Pulse Power dissipation at 25° C - $t_{clamping}$ (0 volts to V_{BR} min): Less than 1 x 10⁻¹² seconds Operating and Storage Temperatures: -65° to +175° C - Forward surge rating: 200 amps, 1/120 second at 25° C • Steady State (Average) power dissipation: 1 watt at T₁ of - Repetition rate (duty cycle): .01% ## **MECHANICAL CHARACTERISTICS** · Standard DO-13 package - glass-tometal hermetically sealed • 1500 watts peak power dissipation Available in ranges from 6.8 V to 200V DO-13 hermetically sealed package - Weight: 1.5 grams (approximate) - · Positive terminal marked with band - Standard Polarity Cathode to Case - · Body marked with logo and type number ## **ELECTRICAL CHARACTERISTICS** • Clamping Factor: 1.33 @ Full rated power 1.20 @ 50% rated power Clamping Factor: The ratio of the actual $\rm V_C$ (Clamping Voltage) to the $\rm V_{BR}$ (Breakdown Voltage) as measured on a specific device. (See Figure 3 for test pulse wave shape.) P.O. Box 3129 · Tempe, Arizona 85280 · 3129 · USA Tel 602-431-8101 · Fax 602-431-2288 ## **ELECTRICAL CHARACTERISTICS AT 25° C** JEDEC Registered Data | JEDEC | RATED
STAND-OFF
VOLTAGE
(See Note 1) | | AKDOWN
OLTAGE | | MAXIMUM
CLAMPING
VOLTAGE
@Ipp
(See Fig. 2) | MAXIMUM
STANDBY
CURRENT | MAXIMUM
PEAK PULSE
CURRENT | MAXIMUM
TEMPERATURE
COEFFICIENT | |--|---|----------------------------------|----------------------------------|----------------|--|--|--------------------------------------|---------------------------------------| | TYPE
NUMBER | V _{WM}
VOLTS | VO
Min | LTS
Max | mA | (See Fig. 3)
V _C
VOLTS | h ∀
I ^D
®∧ ^{MM} | (See Fig. 3)
I _{pp}
A | OF V _{BR}
mV/°C | | 1N5629
1N5629A*
1N5630
1N5630A* | 5.50
5.80
6.05
6.40 | 6.12
6.45
6.75
7.13 | 7.48
7.14
8.25
7.88 | 10
10
10 | 10.8
10.5
11.7
11.3 | 1000
1000
500
500 | 139
143
128
132 | 5.0
5.0
5.0
5.0 | | 1N5631
1N5631A*
1N5632
1N5632A* | 6.63
7.02
7.37
7.78 | 7.38
7.79
8.19
8.65 | 9.02
8.61
10.0
9.55 | 10
10
1 | 12.5
12.1
13.8
13.4 | 200
200
50
50 | 120
124
109
112 | 6.0
6.0
7.0
7.0 | | 1N5633
1N5633A*
1N5634
1N5634A* | 8.10
8.55
8.92
9.40 | 9.0
9.5
9.9
10.5 | 11.0
10.5
12.1
11.6 | 1
1
1 | 15.0
14.5
16.2
15.6 | 10
10
5
5 | 100
103
93
96 | 8.0
8.0
9.0
9.0 | | 1N5635
1N5635A*
1N5636
1N5636A* | 9.72
10.2
10.5
11.1 | 10.8
11.4
11.7
12.4 | 13.2
12.6
14.3
13.7 | 1
1
1 | 17.3
16.7
19.0
18.2 | 5
5
5
5 | 87
90
79
82 | 10
10
11
11 | | 1N5637
1N5637A*
1N5638
1N5638A* | 12.1
12.8
12.9
13.6 | 13.5
14.3
14.4
15.2 | 16.5
15.8
17.6
16.8 | 1
1
1 | 22.0
21.2
23.5
22.5 | 5
5
5
5 | 68
71
64
67 | 13
12
16
14 | | 1N5639
1N5639A*
1N5640
1N5640A* | 14.5
15.3
16.2
17.1 | 16.2
17.1
18.0
19.0 | 19.8
18.9
22.0
21.0 | 1
1
1 | 26.5
25.2
29.1
27.7 | 5
5
5
5 | 56.5
59.5
51.5
54 | 17
19
20
19 | | 1N5641
1N5641A*
1N5642
1N5642A* | 17.8
18.8
19.4
20.5 | 19.8
20.9
21.6
22.8 | 24.2
23.1
26.4
25.2 | 1
1
1 | 31.9
30.6
34.7
33.2 | 5
5
5
5 | 47
49
43
45 | 21
20
25
23 | | 1N5643
1N5643A*
1N5644
1N5644A* | 21.8
23.1
24.3
25.6 | 24.3
25.7
27.0
28.5 | 29.7
28.4
33.0
31.5 | 1
1
1 | 39.1
37.5
43.5
41.4 | 5
5
5
5 | 38.5
40
34.5
36 | 28
25
31
28 | | 1N5645
1N5645A*
1N5646
1N5646A* | 26.8
28.2
29.1
30.8 | 29.7
31.4
32.4
34.2 | 36.3
34.7
39.6
37.8 | 1
1
1 | 47.7
45.7
52.0
49.9 | 5
5
5
5 | 31.5
33
29
30 | 31
30
35
31 | | 1N5647
1N5647A*
1N5648
1N5648A* | 31.6
33.3
34.8
36.8 | 35.1
37.1
38.7
40.9 | 42.9
41.0
47.3
45.2 | 1
1
1 | 56.4
53.9
61.9
59.3 | 5
5
5
5 | 26.5
28
24
25.3 | 39
36
46
44 | | 1N5649
1N5649A*
1N5650
1N5650A* | 38.1
40.2
41.3
43.6 | 42.3
44.7
45.9
48.5 | 51.7
49.4
56.1
53.6 | 1
1
1 | 67.8
64.8
73.5
70.1 | 5
5
5
5 | 22.2
23.2
20.4
21.4 | 50
48
55
51 | | 1N5651
1N5651A*
1N5652
1N5652A* | 45.4
47.8
50.2
53.0 | 50.4
53.2
55.8
58.9 | 61.6
58.8
68.2
65.1 | 1
1
1 | 80.5
77.0
89.0
85.0 | 5
5
5
5 | 18.6
19.5
16.9
17.7 | 58
56
65
62 | | 1N5653
1N5653A*
1N5654
1N5654A* | 55.1
58.1
60.7
64.1 | 61.2
64.6
67.5
71.3 | 74.8
71.4
82.5
78.8 | 1
1
1 | 98.0
92.0
108.0
103.0 | 5
5
5
5 | 15.3
16.3
13.9
14.6 | 71
69
80
76 | | 1N5655
1N5655A*
1N5656
1N5656A* | 66.4
70.1
73.7
77.8 | 73.8
77.9
81.9
86.5 | 90.2
86.1
100.0
95.0 | 1
1
1 | 118.0
113.0
131.0
125.0 | 5
5
5
5 | 12.7
13.3
11.4
12.0 | 90
86
99
94 | | 1N5657
1N5657A*
1N5658
1N5658A* | 81.0
85.5
89.2
94.0 | 90.0
95.0
99.0
105.0 | 110.0
105.0
121.0
116.0 | 1
1
1 | 144.0
137.0
158.0
152.0 | 5
5
5
5 | 10.4
11.0
9.5
9.9 | 109
104
120
115 | | 1N5659
1N5659A*
1N5660
1N5660A* | 97.2
102.0
105.0
111.0 | 108.0
114.0
117.0
124.0 | 132.0
126.0
143.0
137.0 | 1
1
1 | 173.0
165.0
187.0
179.0 | 5
5
5
5 | 8.7
9.1
8.0
8.4 | 131
125
142
136 | | 1N5661
1N5661A*
1N5662
1N5662A* | 121.0
128.0
130.0
136.0 | 135.0
143.0
144.0
152.0 | 165.0
158.0
176.0
168.0 | 1
1
1 | 215.0
207.0
230.0
219.0 | 5
5
5
5 | 7.0
7.2
6.5
6.8 | 164
157
175
167 | | 1N5663
1N5663A*
1N5664
1N5664A* | 138.0
145.0
146.0
154.0 | 153.0
162.0
162.0
171.0 | 187.0
179.0
198.0
189.0 | 1
1
1 | 244.0
234.0
258.0
246.0 | 5
5
5
5 | 6.2
6.4
5.8
6.1 | 186
188
197
188 | | 1N5665
1N5665A* | 162.0
171.0 | 180.0
190.0 | 220.0
210.0 | 1
1 | 287.0
274.0 | 5
5 | 5.2
5.5 | 219
209 | V_F = 3.5V @ 100 A, 8.3 ms sine wave This series of TVS diodes can be used in series or parallel to increase their power handling capability. No precautions are required when using TVS diodes in a series string, as power dissipation for two or more devices of the same type is equally shared. When using TVS diodes in parallel it is recommended that ProTek's Applications Department is contacted for specific instructions. Matched sets can be ordered from the factory for a small additional charge. *Parts are available screened to the JANTX requirements of MIL-S-19500/500. D V C Clamping Voltage Rise D V is the rise of Clamping Voltage above the actual V $_{BR}$ @ I , FIGURE 5 ## **ABBREVIATIONS & SYMBOLS** V_{BR} - Breakdown Voltage - Volts Vwm Rated Stand-Off Voltage: Maximum working (continuous) DC or peak voltage which may be applied over the standard operating temperature range. (Note: V_{WM} is a selected device parameter and should be equal to or greater than the maximum operating voltage of the line to be protected.) V_{BR} (min) Minimum Breakdown Voltage: This is the minimum voltage the device will exhibit and is used to assure that conduction does not occur prior to that voltage at 25°C. V_C Maximum Clamping Voltage: The maximum peak voltage that appears across the TVS when subjected to the peak pulse current in a 1 millisecond time interval. The peak pulse voltages are the combination of voltage rise due to both the series resistance and the thermal rise. Ipp Peak Pulse Current - See Figure 3 Pp Peak Pulse Power - See Figure 1 I_D Standby-Current Test Current Note 1: A TVS is normally selected according to its "Rated Stand-Off Voltage" V_{WM} which should be equal to or greater than the continuous peak operating voltage level. ® Registered TradeMark of ProTek Devices LP. ProTek Devices reserves the right to change the electrical and/or mechanical characteristics as specified herein. 5012 11/94 P.O.Box 3129 · Tempe, Arizona 85280 - 3129 · USA · Tel 602-431-8101 · Fax 602-431-2288