CNational Semiconduc
100351
Low Power Hex D Flip-Flop

General Description

The 100351 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_{a} and CP_{b}) and common Master Reset (MR) input. Data enters a master when both CP_{a} and CP_{b} are LOW and transfers to the slave when CP_{a} and CP_{b} (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Features

- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2 V to -5.7 V
- Standard Microcircuit Drawing (SMD) 5962-9457901

Logic Symbol

Connection Diagrams

Logic Diagram

Truth Tables (Each Flip-flop)
Synchronous Operation

Inputs				
$\mathbf{D}_{\mathbf{n}}$	$\mathbf{C P}_{\mathbf{a}}$	$\mathbf{C P}_{\mathbf{b}}$	$\mathbf{M R}$	$\mathbf{Q}_{\mathbf{n}}(\mathrm{t}+\mathbf{1})$
L	\sim	L	L	L
H	-	L	L	H
L	L	\sim	L	L
H	L	-	L	H
X	H	-	L	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$
X	\sim	H	L	$\mathrm{Q}_{\mathbf{n}}(\mathrm{t})$
X	L	L	L	$\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$

Asynchronous Operation

Inputs				
Outputs				
$\mathbf{D}_{\mathbf{n}}$	$\mathbf{C P}_{\mathbf{a}}$	$\mathbf{C P}_{\mathbf{b}}$	$\mathbf{M R}$	$\mathbf{Q}_{\mathbf{n}}(\mathbf{t + 1})$
X	X	X	H	L

H = HIGH Voltage Leve
L = LOW Voltage Level
X = Don't Care
$t=$ Time before CP positive transition
$t+1=$ Time after CP positive transition
$\sim=$ LOW-to-HIGH transition

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Above which the useful life may be impaired
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic
$+175^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin
Input Voltage (DC)

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

Output Current (DC Output HIGH)
$-50 \mathrm{~mA}$

Recommended Operating Conditions

Case Temperature (T_{C})
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})
-5.7 V to -4.2 V
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Min}) \end{gathered}$	Loading with 50Ω to -2.0 V	(Notes 3, 4, 5)	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035		mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=V_{\text {IH }}(\operatorname{Min}) \\ \text { or } V_{\text {IL }}(\operatorname{Max}) \end{gathered}$	Loading with 50Ω to -2.0 V	(Notes 3, 4, 5)	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs		(Notes 3, 4, 5, 6)	
$\overline{\mathrm{V} \text { IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs		(Notes 3, 4, 5, 6)	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{aligned} & \hline-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		(Notes 3, 4, 5)	
$\overline{I_{\mathrm{IH}}}$	$\begin{aligned} & \text { Input HIGH Current } \\ & \qquad \begin{array}{r} \text { CP, MR } \\ D_{0}-D_{5} \\ \hline \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & 350 \\ & 240 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		(Notes 3, 4, 5)	
	$\begin{array}{r} \mathrm{CP}, \mathrm{MR} \\ \mathrm{D}_{0}-\mathrm{D}_{5} \\ \hline \end{array}$		$\begin{aligned} & \hline 500 \\ & 340 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
l_{EE}	Power Supply Current	-135	-50	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Inputs Open		(Notes 3, 4, 5)	

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 4: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 6: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Toggle Frequency	375		375		375		MHz	Figures 2, 3	(Note 10)
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output	0.40	2.40	0.50	2.20	0.50	2.60	ns	Figures 1, 3	(Notes 7, 8, 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Output	0.60	2.70	0.70	2.60	0.80	2.90	ns	Figures 1, 4	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.60	0.20	1.60	0.20	1.60	ns	Figures 1, 3	(Note 10)
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.90 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.80 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.60 \\ & \hline \end{aligned}$		ns	Figure 5 Figure 4	
t_{h}	Hold Time $\mathrm{D}_{0}-\mathrm{D}_{5}$	1.50		1.40		1.60		ns	Figure 5	
$\overline{t_{p w}(H)}$	Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$, MR	2.00		2.00		2.00		ns	Figures 3, 4	

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 8: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Temperature only, Subgroup A9.
Note 9: Sample tested (Method 5005, Table I) on each Mfg. lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temperature, Subgroups A10 and A11.
Note 10: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data)

Test Circuitry

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

Test Circuitry (Continued)

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from $G N D$ to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Jig and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 2. Toggle Frequency Test Circuit

Switching Waveforms

FIGURE 3. Propagation Delay (Clock) and Transition Times

Switching Waveforms (Continued)

FIGURE 4. Propagation Delay (Reset)

Notes:
t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input.
FIGURE 5. Setup and Hold Time

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D) NS Package Number J24E

W24B (REV D)

24-Lead Quad Cerpak (F) NS Package Number W24B

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI CONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices or sysure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
\square

100351

Low Power Hex D Flip-Flop

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples
\& Pricing

General Description

The 100351 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs $\left(\mathrm{CP}_{\mathrm{a}}\right.$ and $\left.\mathrm{CP}_{\mathrm{b}}\right)$ and common Master Reset (MR) input. Data enters a master when both CP_{a} and CP_{b} are LOW and transfers to the slave when CP_{a} and CP_{b} (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 k Ohm pull-down resistors.

Features

- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2 V to -5.7 V
- Standard Microcircuit Drawing (SMD) 5962-9457901

Datasheet

Title	$\left\lvert\, \begin{gathered} \text { Size } \\ \text { (in Kbytes) } \end{gathered}\right.$	Date	区 View Online	Download	Receive via Email
100351 Low Power Hex D Flip-Flop	147 Kbytes	17-Aug-98	View Online	Download	Receive via Email
100351 Mil-Aero Datasheet MN100351-X	106 Kbytes		View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples \& Pricing

Part Number	Package		Status	Models		 Electronic Orders	Budgetary Pricing		Std Pack Size	Package Marking
	Type	\# pins		SPICE	IBIS		Quantity	\$US each		
5962-9457901MXA	Cerdip	24	Full production	N/A	N/A	区	50+	\$39.6000	$\begin{array}{\|l\|} \hline \text { tube } \\ \text { of } \\ 15 \end{array}$	$\begin{array}{\|c\|} \hline[\operatorname{logoc} \phi \mathrm{Z} \phi \mathrm{~S} \phi 4 \phi \mathrm{~A} \$ \mathrm{E} \\ \text { 100351DMQB /Q } \\ 5962-9457901 \mathrm{MXA} \\ \hline \end{array}$
5962-9457901MYA	Cerquad	24	Full production	N/A	N/A	®	50+	\$41.2000	$\left\|\begin{array}{\|c} \text { tube } \\ \text { of } \\ 14 \end{array}\right\|$	$\begin{gathered} \hline \hline \text { logo }] \& \mathrm{Z} \phi \mathrm{~S} \phi 4 \phi \mathrm{~A} \\ \text { Q\$E } 100351 \\ \text { FMQB } 5962 \\ \text {-9457901 } \\ \text { MYA } \end{gathered}$
5962-9457901VXA	Cerdip	24	Full production	N/A	N/A	.	50+	\$265.0000	tube of 15	$\begin{array}{\|c\|} \hline[\operatorname{logog}] ¢ \mathrm{Z} \phi \mathrm{~S} \phi 4 \not \subset \mathrm{~A} \$ E \\ \text { 100351J-QMLV } \\ 5962-9457901 \mathrm{VXA} \end{array}$
100351W-QMLV	Cerquad	24	Full production	N/A	N/A	.	50+	\$265.0000	$\left\lvert\, \begin{array}{\|l\|} \|c\| \\ \text { tube } \\ \text { of } \\ 14 \end{array}\right.$	$\begin{gathered} \hline \hline[\operatorname{logo}] \phi \mathrm{Z} \phi \mathrm{~S} \phi 4 \notin \mathrm{~A} \\ 100351 \mathrm{~W}- \\ \text { QMLV } 5962 \\ \text {-9457901 } \\ \text { VYA \$E } \end{gathered}$
100351 MW8	waf		Full production	N/A	N/A	.			N/A	-

About Languages . About the Site . About "Cookies"

National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation \square Preferences . Feedback

