

Unit Loading/Fan Out

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / I_{\mathbf{I L}}$ Output $I_{\mathrm{OH}} / \mathbf{I O L}_{\mathrm{OL}}$
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OE	Output Enable	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	TRI-STATE Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{9}$	Clock Input	TRI-STATE Outputs	$150 / 40(33.3)$

Functional Description

The 'F821 consists of ten D-type edge-triggered flip-flops. This device has TRI-STATE true outputs for bus systems organized in a broadside pinning. The buffered Clock (CP) and buffered Output Enable (OE) are common to all flipflops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the $\overline{\mathrm{OE}}$ LOW the content of the flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Function Table					
Inputs			Internal	Output	Function
$\overline{O E}$	CP	D	\bar{Q}	0	
H	H	X	NC	Z	Hold
H	L	X	NC	Z	Hold
H	$\widetilde{ }$	L	H	Z	Load
H	\checkmark	H	L	Z	Load
L	Ω	L	H	L	Data Available
L	Ω	H	L	H	Data Available
L	H	X	NC	NC	No Change in Data
L	L	X	NC	NC	No Change in Data

$\mathrm{L}=$ LOW Voltage Level
H = HIGH Voltage Level
$\mathrm{X}=\mathrm{Im}$ material
Z $=$ High Impedance
$\mathcal{T}=$ LOW-to-HIGH Transition
NC $=$ No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Junction Temperature under Bias

$$
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$ Plastic

$$
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

V_{CC} Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Voltage (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
\text { TRI-STATE Output } &
\end{array}
$$

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{Cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F $10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
${ }^{\prime} \mathrm{OD}$	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Cu				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Cu				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICCZ	Power Supply Curre			78	100	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil} \\ \mathbf{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	150		60		70		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to O_{n}	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 6.4 \\ & 6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	3.4 3.5	7.0 7.0	1.0 1.0	7.5 7.5	1.5 1.5	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	

AC Operating Requirements

Symbol	Parameter							Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	2.5		4.0		3.0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	D_{n} to CP	2.5		4.0		3.0		
$\mathrm{t}_{\mathrm{h}}(\mathrm{H})$	Hold Time, HIGH or LOW$D_{n} \text { to } C P$	2.5		2.5		2.5		
$\mathrm{th}_{\mathrm{h}}(\mathrm{L})$		2.5		2.5		2.5		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		6.0		ns
$t_{\text {w }}(\mathrm{L})$				6.0				

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

24-Lead (0.300 " Wide) Ceramic Dual-In-Line Package (SD) NS Package Number J24F

54F/74F821 10-Bit D-Type Flip-Flop
Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240	National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

\square
Products > Military/ Aerospace > Logic > FAST > 54F821

54F821

10-Bit D Flip-Flop

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples \& Pricing

General Description

The 'F821 is a 10-bit D-type flip-flop with TRI-STATE® true outputs arranged in a
broadside pinout. The 'F821 is functionally and pin compatible with the AMD's Am29821.

Features

- TRI-STATE Outputs
- Direct replacement for AMD's Am29821

Datasheet

Title	$\underset{(\text { in Kbytes })}{\text { Size }}$	Date			Receive via Email
54F821 10-Bit D-Type Flip-Flop	153 Kbytes	9-Dec-97	View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples \& Pricing

Part Number	Package		Status	Models		 Electronic Orders	Budgetary Pricing		Std Pack Size	Package Marking
	Type	\# pins		SPICE	IBIS		Quantity	\$US each		
5962-89438013A	LCC	28	Full production	N/A	N/A	x	50+	\$20.0000	$\begin{gathered} \text { tray } \\ \text { of } \\ 25 \end{gathered}$	$\begin{gathered} {[\operatorname{logo}] \phi \mathrm{Z} \phi \mathrm{~S} \phi 4 \not 4 \mathrm{~A}} \\ 54 \mathrm{~F} 821 \\ \text { LMQB /Q¢M\$E } \\ 5962- \\ 89438013 \mathrm{~A} \end{gathered}$
5962-8943801LA	Cerdip	24	Full production	N/A	N/A	® ${ }^{\text {® }}$	50+	\$7.5000	tube of 15	$[$ logo $] \phi \mathrm{Z} \phi \mathrm{S} \phi 4 ¢ \mathrm{~A} \$ \mathrm{E}$ $54 \mathrm{~F} 821 \mathrm{SDMQB} / \mathrm{Q} \not \subset \mathrm{M}$ $5962-8943801 \mathrm{LA}$

[Information as of 1-Sep-2000]

Quick Search	Parametric Search	System Diagrams	$\frac{\text { Product }}{\text { Tree }}$	Home

About Languages. About the Site. About "Cookies"
National is QS 9000 Certified . Privacy/Security
Copyright © National Semiconductor Corporation
\square Preferences. Feedback

