
INTEGRATED CIRCUITS

Product data Replaces 74ABT16543; 74ABTH16543 dated 1998 Feb 27 2002 Apr 03

Philips Semiconductors

16-bit latched transceiver with dual enable (3-State)

74ABT16543

FEATURES

- Two 8-bit octal transceivers with D-type latch
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Multiple V_{CC} and GND pins minimize switching noise
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- Output capability: +64 mA/-32 mA

QUICK REFERENCE DATA

- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

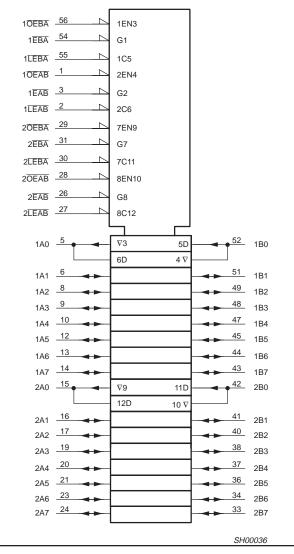
The 74ABT16543 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT16543 16-bit registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable ($n\overline{\text{LEAB}}$, $n\overline{\text{LEBA}}$) and Output Enable ($n\overline{\text{OEAB}}$, $n\overline{\text{OEBA}}$) inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64 mA.

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25 °C; GND = 0 V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx	$C_{L} = 50 \text{ pF}; V_{CC} = 5 \text{ V}$	2.5 2.2	ns
C _{IN}	Input capacitance	$V_I = 0 V \text{ or } V_{CC}$	3	pF
C _{I/O}	I/O capacitance	$V_O = 0 V \text{ or } V_{CC;}$ 3-State	7	pF
I _{CCZ}		Outputs disabled; V_{CC} = 5.5 V	550	μΑ
I _{CCL}	Quiescent supply current	Outputs low; $V_{CC} = 5.5 V$	9	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
56-Pin Plastic SSOP Type III	–40 °C to +85 °C	74ABT16543DL	SOT371-1
56-Pin Plastic TSSOP Type II	–40 °C to +85 °C	74ABT16543DGG	SOT364-1

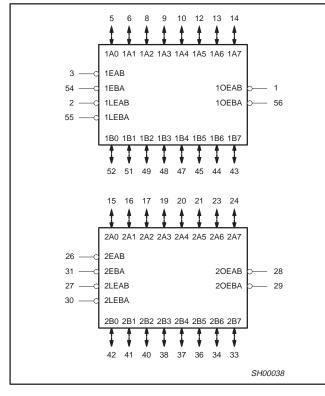

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
5, 6, 8, 9, 10, 12, 13, 14 15, 16, 17, 19, 20, 21, 23, 24	1A0 – 1A7, 2A0 – 2A7	Data inputs/outputs
52, 51, 49, 48, 47, 45, 44, 43 42, 41, 40,38, 37, 36, 34, 33	1B0 – 1B7, 2B0 – 2B7	Data inputs/outputs
1, 56 28, 29	1 <u>OEAB</u> , 1 <u>OEBA,</u> 2OEAB, 2OEBA	A-to-B / B-to-A Output Enable inputs (Active-LOW)
3, 54 26, 31	1EAB, 1EBA, 2EAB, 2EBA	A-to-B / B-to-A Enable inputs (Active-LOW)
2, 55 27, 30	1LEAB, 1LEBA, 2LEAB, 2LEBA	A-to-B / B-to-A Latch Enable inputs (Active-LOW)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0 V)
7, 22, 35, 50	V _{CC}	Positive supply voltage

16-bit latched transceiver with dual enable (3-State)

74ABT16543

LOGIC SYMBOL (IEEE/IEC)


PIN CONFIGURAT	ION		
		,	
1OEAB	1	56	1 OEBA
1LEAB	2	55	1LEBA
1EAB	3	54	1EBA
GND	4	53	GND
1A0	5	52	1B0
1A1	6	51	1B1
V _{CC}	7	50	VCC
1A2	8	49	1B2
1A3	9	48	1B3
1A4	10	47	1B4
GND	11	46	GND
1A5	12	45	1B5
1A6	13	44	1B6
1A7	14	43	1B7
2A0	15	42	2B0
2A1	16	41	2B1
2A2	17	40	2B2
GND	18	39	GND
2A3	19	38	2B3
2A4	20	37	2B4
2A5	21	36	2B5
VCC	22	35	VCC
2A6	23	34	2B6
2A7	24	33	2B7
GND	25	32	GND
2EAB	26	31	2EBA
2LEAB	27	30	2LEBA
2 OEAB	28	29	20EBA
	SH00	. 037	

PIN CONFIGURATION

2002 Apr 03

Product data

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

The 74ABT16543 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B Enable (nEAB) input and the A-to-B Latch Enable (nLEAB) input are LOW the A-to-B path is transparent.

A subsequent LOW-to-HIGH transition of the nLEAB signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With EAB and nOEAB both LOW, the 3-State B output buffers are active and display the data present at the outputs of the A latches.

Control of data flow from B to A is similar, but using the nEBA, nLEBA, and nOEBA inputs.

FUNCTION TABLE

	INI	PUTS	OUTPUTS	STATUS	
nOEXX	nEXX	nLEXX	nAx or nBx	nBx or nAx	STATUS
Н	Х	Х	Х	Z	Disabled
Х	Н	Х	Х	Z	Disabled
L	$\uparrow \uparrow$	L	h I	Z Z	Disabled + Latch
L	L	$\stackrel{}{\uparrow}$	h I	H L	Latch + Display
L	L	L	H L	H L	Transparent
L	L	Н	Х	NC	Hold

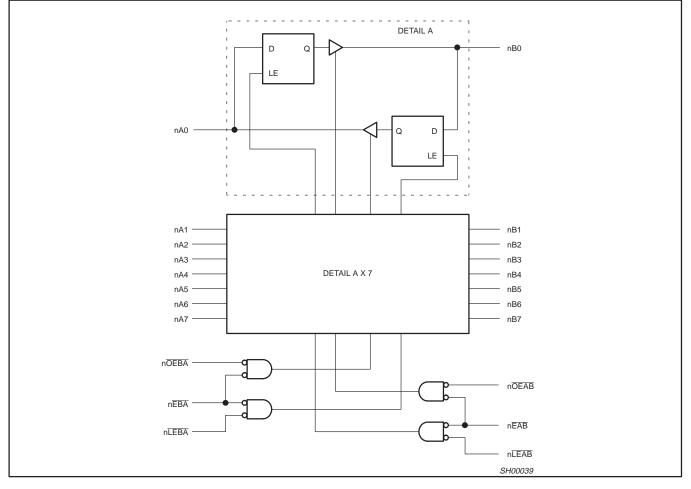
H = High voltage level

= High voltage level one set-up time prior to the LOW-to-HIGH transition of nLEXX or nEXX (XX = AB or BA) h

L Low voltage level =

Low voltage level one set-up time prior to the LOW-to-HIGH transition of nLEXX or nEXX (XX = AB or BA) Т =

= Don't care


X ↑ = LOW-to-HIGH transition of $n\overline{LEXX}$ or $n\overline{EXX}$ (XX = AB or BA)

NC= No change

High impedance or "off" state Z =

16-bit latched transceiver with dual enable (3-State)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0 V	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{ОК}	DC output diode current	V _O < 0 V	-50	mA
V _{OUT}	DC output voltage ³	output in Off or HIGH state	-0.5 to +5.5	V
		output in LOW state	128	mA
IOUT	DC output current	output in HIGH state	-64	mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2.

temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C. 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Product data

16-bit latched transceiver with dual enable (3-State)

74ABT16543

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STMBOL	PARAMEIER	Min	Max	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	HIGH-level input voltage	2.0		V
V _{IL}	LOW-level Input voltage		0.8	V
I _{OH}	HIGH-level output current		-32	mA
I _{OL}	LOW-level output current		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

						LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS		Ta	_{mb} = +25	°C	T _{amb} = −40 °C to +85 °C		UNIT
				MIN	TYP	MAX	MIN	MAX	
V _{IK}	Input clamp voltage	V_{CC} = 4.5 V; I _{IK} = -18 mA				-1.2		-1.2	V
		V_{CC} = 4.5 V; I_{OH} = –3 mA; V_{I} = V_{IL} c	or V _{IH}	2.5	2.9		2.5		V
V _{OH}	HIGH-level output voltage	V_{CC} = 5.0 V; I_{OH} = –3 mA; V_{I} = V_{IL} c	or V _{IH}	3.0	3.4		3.0		V
		V_{CC} = 4.5 V; I_{OH} = –32 mA; V_{I} = V_{IL}	or V _{IH}	2.0	2.4		2.0		V
V _{OL}	LOW-level output voltage	V_{CC} = 4.5 V; I_{OL} = 64 mA; V_{I} = V_{IL} o	r V _{IH}		0.36	0.55		0.55	V
V _{RST}	Power-up output voltage ³	V_{CC} = 5.5 V; I _O = 1 mA; V _I = GND o	r V _{CC}		0.13	0.55		0.55	V
łı	Input leakage current	V_{CC} = 5.5 V; V _I = GND or 5.5 V	Control pins		±0.01	±1.0		±1.0	μΑ
I _{OFF}	Power-off leakage current	V_{CC} = 0.0 V; V_{O} or V_{I} \leq 4.5 V			±2.0	±100		±100	μΑ
I _{PU/PD}	Power-up/down 3-State output current ⁴	V_{CC} = 2.1 V; V_{O} = 0.0 V or $V_{CC};$ V_{I} = GND or $V_{CC};$ V_{OE} = Don't care			±1.0	±50		±50	μΑ
I _{IH} + I _{OZH}	3-State output High current	V_{CC} = 5.5 V; V_{O} = 5.5 V; V_{I} = V_{IL} or	V _{IH}		1.0	10		10	μΑ
I _{IL} + I _{OZL}	3-State output Low current	V_{CC} = 5.5 V; V_{O} = 0.0 V; V_{I} = V_{IL} or	V _{IH}		-1.0	-10		-10	μΑ
I _{CEX}	Output High leakage current	V_{CC} = 5.5 V; V_{O} = 5.5 V; V_{I} = GND α	or V _{CC}		1.0	50		50	μΑ
Ι _Ο	Output current ¹	V_{CC} = 5.5 V; V_{O} = 2.5 V		-50	-100	-200	-50	-200	mA
I _{CCH}		V_{CC} = 5.5 V; Outputs HIGH, V_{I} = GND or V_{CC}			0.55	2		2	mA
I _{CCL}	Quiescent supply current	V_{CC} = 5.5 V; Outputs LOW, V_{I} = GND or V_{CC}			9	19		19	mA
I _{CCZ}		$V_{CC} = 5.5 \text{ V}$; Outputs 3–State; $V_I = \text{GND or } V_{CC}$			0.55	2		2	mA
ΔI _{CC}	Additional supply current per input pin ²	V_{CC} = 5.5 V; one input at 3.4 V, other inputs at V_{CC} or GND			5.0	50		50	μΑ

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

2. This is the increase in supply current for each input at 3.4 V.

For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 msec. From V_{CC} = 2.1 V to V_{CC} = 5 V ± 10% a transition time of up to 100 μsec is permitted.

6

16-bit latched transceiver with dual enable (3-State)

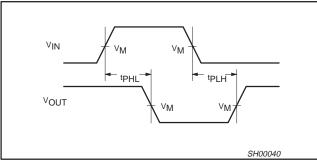
74ABT16543

Product data

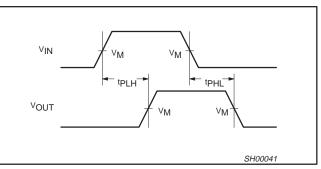
AC CHARACTERISTICS

GND = 0 V, t_{R} = t_{F} = 2.5 ns, C_{L} = 50 pF, R_{L} = 500 Ω

					LIMIT	S		
SYMBOL	PARAMETER	WAVEFORM	1	ר _{amb} = +25 ° V _{CC} = +5.0 \	C /	T _{amb} = -40 V _{CC} = +5.	°C to +85 °C 0 V ±0.5 V	UNIT
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx, nBx to nAx	2	1.0 1.0	2.5 2.2	3.3 4.4	1.0 1.0	3.8 5.1	ns
t _{PLH} t _{PHL}	Propagation delay LEBA to nAx, LEAB to nBx	1, 2	1.0 1.2	3.1 3.0	4.3 4.8	1.0 1.2	5.2 5.6	ns
t _{PZH} t _{PZL}	Output enable time OEBA to nAx, OEAB to nBx	4 5	1.0 1.1	3.3 3.3	4.3 5.9	1.0 1.1	5.2 7.0	ns
t _{PHZ} t _{PLZ}	Output disable time OEBA to nAx, OEAB to nBx	4 5	1.9 1.6	3.5 2.6	5.0 4.2	1.9 1.6	5.7 4.6	ns
t _{PZH} t _{PZL}	Output enable time EBA to nAx, EAB to nBx	4 5	1.0 1.2	3.4 3.4	4.9 6.5	1.0 1.2	6.2 7.8	ns
t _{PHZ} t _{PLZ}	Output disable time EBA to nAx, EAB to nBx	4 5	2.0 1.7	3.4 2.6	5.6 5.1	2.0 1.7	6.6 5.4	ns


AC SETUP REQUIREMENTS

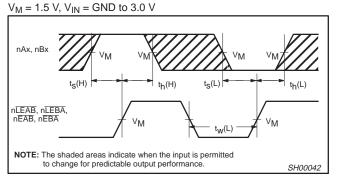
GND = 0 V, $t_R = t_F$ = 2.5 ns, C_L = 50 pF, R_L = 500 Ω

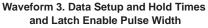

					LIMITS	
SYMBOL	PARAMETER	WAVEFORM	T _{amb} = +25 °C V _{CC} = +5.0 V		T _{amb} = −40 °C to +85 °C V _{CC} = +5.0 V ±0.5 V	UNIT
			MIN	TYP	MIN	
t _s (H) t _s (L)	Set-up time nAx to LEAB, nBx to LEBA	3	1.5 3.5	0.4 -0.1	1.5 3.5	ns
t _h (H) t _h (L)	Hold time nAx to LEAB, nBx to LEBA	3	1.5 2.0	0.2 -0.3	1.5 2.0	ns
t _s (H) t _s (L)	Set-up time nAx to EAB, nBx to EBA	3	1.5 3.5	0.2 -0.3	1.5 3.5	ns
t _h (H) t _h (L)	Hold time nAx to EAB, nBx to EBA	3	1.5 2.0	0.3 -0.2	1.5 2.0	ns
t _w (L)	Latch enable pulse width, LOW	3	4.0	3.1	4.0	ns

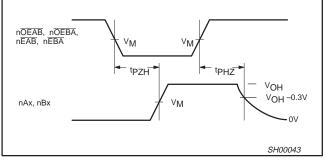
AC WAVEFORMS

 V_{M} = 1.5 V, V_{IN} = GND to 3.0 V

Waveform 1. Propagation Delay for Inverting Output

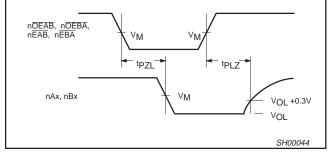


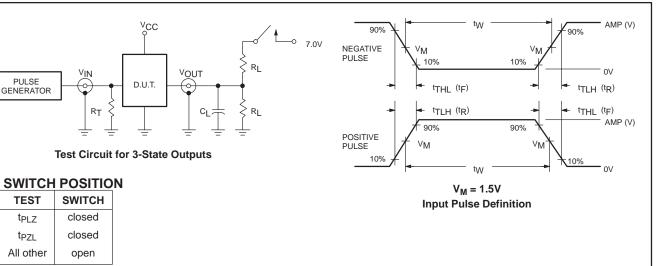

Waveform 2. Propagation Delay for Non-Inverting Output


16-bit latched transceiver with dual enable (3-State)

74ABT16543

AC WAVEFORMS (Continued)

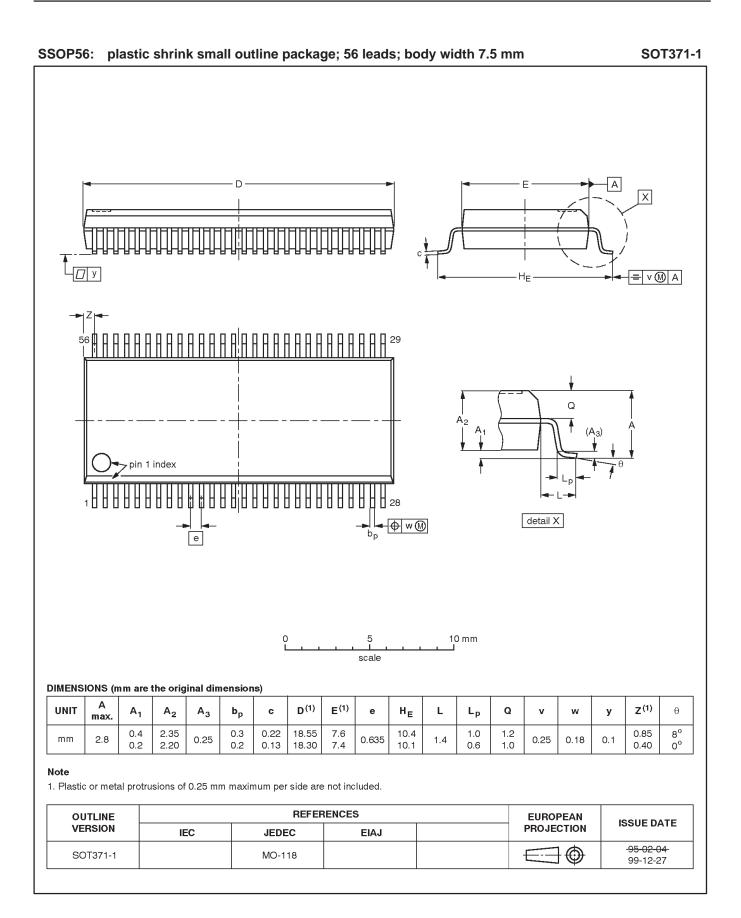




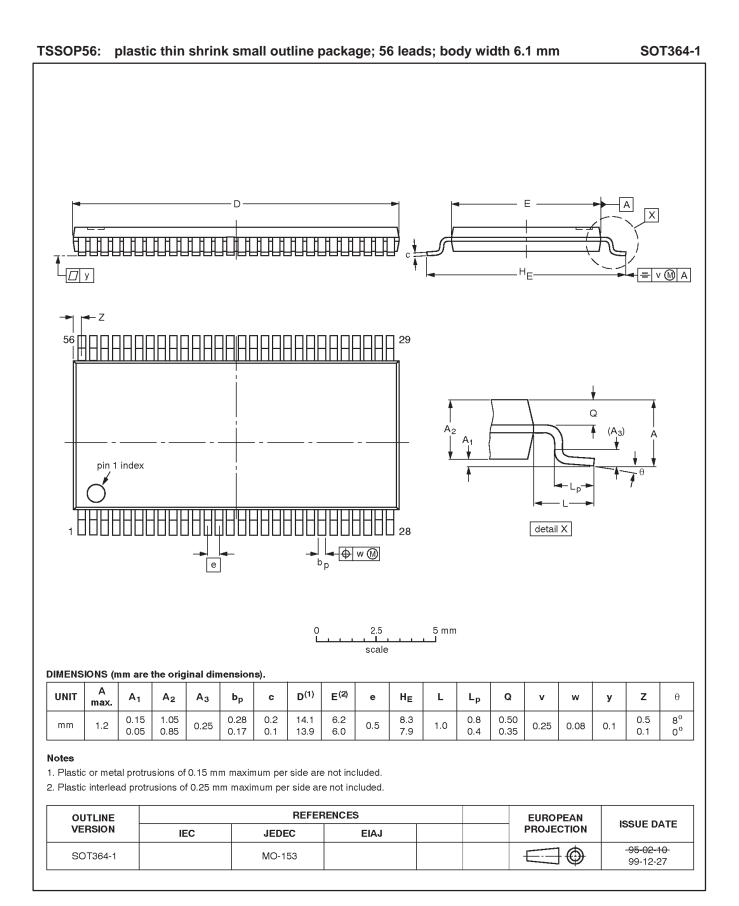
Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

TEST CIRCUIT AND WAVEFORMS

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level



DEFINITIONS


- R_L = Load resistor; see AC CHARACTERISTICS for value.
- $\label{eq:CL} \begin{array}{ll} C_L = & Load \mbox{ capacitance includes jig and probe capacitance;} \\ & see \mbox{ AC CHARACTERISTICS for value.} \end{array}$
- $\label{eq:RT} \mathsf{R}_{\mathsf{T}} = \quad \text{Termination resistance should be equal to } \mathsf{Z}_{\mathsf{OUT}} \text{ of } \\ \text{pulse generators.}$

	INPUT PULSE REQUIREMENTS						
FAMILY	Amplitude	Rep. Rate	t _W	t _R	t _F		
74ABT/H16	3.0V	1MHz	500ns	2.5ns	2.5ns		

74ABT16543

74ABT16543

2002 Apr 03

74ABT16543

NOTES

Product data

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 © Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 04-02

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 09692

Let's make things better.

Semiconductors