

DM74ALS652/74ALS652-1 Octal 3-STATE Bus Transceiver and Register

General Description

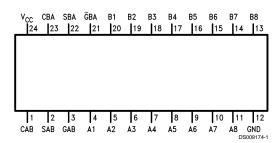
This device incorporates an octal transceiver and an octal D-type register configured to enable transmission of data from bus to bus or internal register to bus.

This bus transceiver features totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high level logic drive provide this device with the capability of being connected directly to and driving the bus lines in a bus organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The 'ALS652-1 version features the same performance as the standard versions, with the addition of increased current drive capability to meet the current requirements of various bus architectures. For all ALS-1 products, the recommended maximum $\rm I_{OL}$ is increased to 48 mA.

The registers in the 'ALS652 are edge-triggered D-type flip-flops. On the positive transition of the clock (CAB or CBA), the input data is stored into the appropriate register. The CAB input controls the transfer of data into the A register and the CBA input controls the B register.

The SAB and SBA control pins are provided to select whether real-time data or stored data is transferred. A low in-


put level selects real-time data and a high level selects stored data. The select controls have a "make before break" configuration to eliminate a glitch which would normally occur in a typical multiplexer during the transition between stored and real-time data.

The enable (GAB and $\overline{G}BA$) control pins provide four modes of operation: real-time data transfer from bus A to B, real-time data transfer from bus B to A, real-time bus A and/or B data transfer to internal storage, or internal stored data transfer to bus A and/or B.

Features

- Maximum I_{OL} increased to 48 mA for 'ALS652-1product
- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly
- Independent registers and enables for A and B buses
- Multiplexed real-time and stored data

Connection Diagram

Order Number DM74ALS652NT, 74ALS652-1NT, DM74ALS652WM or 74ALS652-1WM See Package Number M24B or N24C **Absolute Maximum Ratings** (Note 2)

Supply Voltage 7V
Input Voltage

Control Inputs 7V I/O Ports 5.5V Operating Free-Air Temperature

Range 0°C to $+70^{\circ}\text{C}$ Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

Typical θ_{JA}

N Package 44.5°C/W M Package 80.5°C/W

Recommended Operating Conditions

Symbol	Parameter		DM74	DM74ALS652/74ALS652-1			
		Min	Nom	Max	1		
V _{cc}	Supply Voltage	4.5	5	5.5	V		
V _{IH}	High Level Input Voltage	2			V		
V _{IL}	Low Level Input Voltage			0.8	V		
I _{OH}	High Level Output Current			-15	mA		
I _{OL}	Low Level Output Current	ALS652			24	mA	
		ALS652-1			48		
f _{CLK}	Clock Frequency	0		40	MHz		
t _W	Pulse Duration, Clocks Low or High	12.5			ns		
t _{SU}	Data Setup Time, A before CAB or	10↑			ns		
	B before CBA (Note 3)						
t _H	Data Hold Time, A after CAB or	0↑			ns		
	B after CBA (Note 3)						
T _A	Free Air Operating Temperature	0		70	°C		

Note 1: This product meets application requirements of 500 temperature cycles from -65°C to +150°C.

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: \uparrow = with reference to the low to high transition of the respective clock.

Electrical Characteristics

over recommended free air temperature range

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	V_{CC} = Min, I_I = -18 mA				-1.2	V
V _{OH}	High Level Output	Level Output $V_{CC} = 4.5V \text{ to } 5.5V \qquad I_{OH} = -0.4 \text{ mA}$		V _{CC} - 2			
	Voltage	V _{CC} = Min	$I_{OH} = -3 \text{ mA}$	2.4	3.2		V
			I _{OH} = Max	2			
V _{OL}	Low Level Output	V _{CC} = Min	I _{OL} = 12 mA		0.25	0.4	
	Voltage		I _{OL} = 24 mA		0.35 0.5	V	
			I _{OL} = 48 mA		0.35	0.5	
I _I	Input Current at Max	V _{CC} = Max	I/O Ports, V _I = 5.5V			100	μA
	Input Voltage		Control Inputs, V _I = 7V			100	
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V, (Note 4)				20	μA
I _{IL}	Low Level Input	V _{CC} = Max,	Control Inputs			-200	μA
	Current	V _I = 0.4V (Note 4)	I/O Ports			-200	
Io	Output Drive Current	V_{CC} = Max, V_{O} = 2.25V		-30		-112	mA
I _{cc}	Supply Current	V _{CC} = Max	Outputs High		47	76	
			Outputs Low		55	88	mA
			Outputs Disabled		55	88	

Note 4: For I/O ports the 3-STATE output currents (I_{OZH} and I_{OZL}) are included in the I_{IH} and I_{IL} parameters.

Switching Characteristics over recommended operating free air temperature range (Notes 5, 6)

Symbol	Parameter	Conditions	From (Input) To (Output)	DM74ALS652/ 74ALS652-1		Units
				Min	Max	
t _{PLH}	Propagation Delay Time	$V_{CC} = 4.5V \text{ to } 5.5V,$	CBA or CAB	10	30	ns
	Low to High Level Output	C _L = 50 pF,	to A or B			
t _{PHL}	Propagation Delay Time	$R_1 = R_2 = 500\Omega,$	CBA or CAB	5	17	ns
	High to Low Level Output	T _A = Min to Max	to A or B			
t _{PLH}	Propagation Delay Time	1	A or B to	5	18	ns
	Low to High Level Output		B or A			
t _{PHL}	Propagation Delay Time	1	A or B to	3	12	ns
	High to Low Level Output		B or A			
t _{PLH}	Propagation Delay Time	1				
	Low to High Level Output		SBA or SAB	12	35	ns
	(with A or B		to A or B			
	Low) (Note 6)					
t _{PHL}	Propagation Delay Time	1				
	High to Low Level Output		SBA or SAB	6	20	ns
	(with A or B		to A or B			
	Low) (Note 6)					
t _{PLH}	Propagation Delay Time	1				
	Low to High Level Output		SBA or SAB	6	25	ns
	(with A or B		to A or B			
	High) (Note 6)					
t _{PHL}	Propagation Delay Time	1				
	High to Low Level Output		SBA or SAB	5	20	ns
	(with A or B		to A or B			
	High) (Note 6)					
t _{PZH}	Output Enable Time	1	GBA to	3	17	ns
	to High Level Output		A			
t _{PZL}	Output Enable Time		GBA to	5	18	ns
	to Low Level Output		Α			
t _{PHZ}	Output Disable Time	1	GBA to	1	10	ns
	from High Level Output		A			
t _{PLZ}	Output Disable Time		GBA to	2	16	ns
	from Low Level Output		A			
t _{PZH}	Output Enable Time		GAB to	6	22	ns
	to High Level Output		В			
t _{PZL}	Output Enable Time		GAB to	6	18	ns
	to Low Level Output		В			
t _{PHZ}	Output Disable Time		GAB to	1	10	ns
	from High Level Output		В			
t _{PLZ}	Output Disable Time		GAB to	2	16	ns
	from Low Level Output		В			

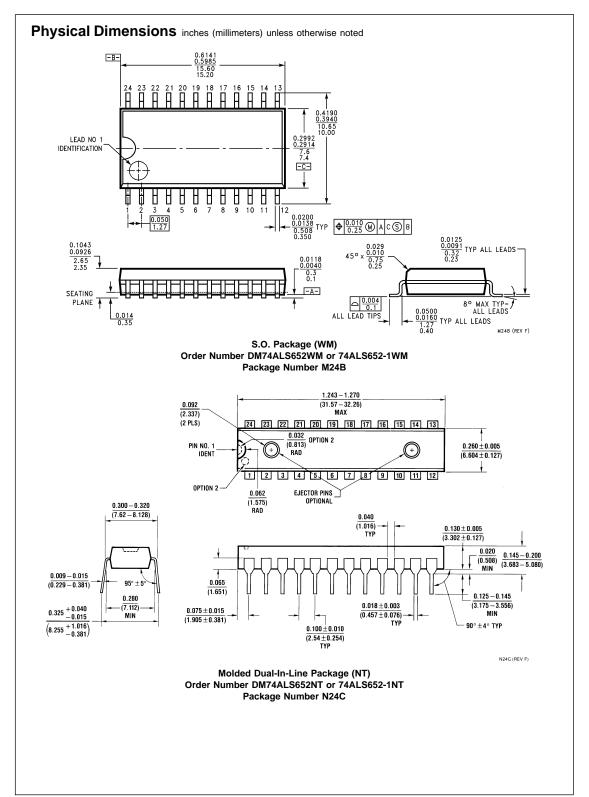
Note 5: See Section 1 for test waveforms and output load.

Note 6: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

Function Table

Inputs			Data I/O (Note 7)		Operation or Function			
GAB	GBA	CAB	СВА	SAB	SBA	A1 thru A8	B1 thru B8	
X	Н	1	H/L	Х	Х	Input	Not Specified	Store A, Hold B
L	Х	H/L	1	Х	Х	Not Specified	Input	Store B, Hold A
L	Н	1	1	X	Х	Input	Input	Store A and B Data
L	Н	H/L	H/L	X	X	Input	Input	Isolation, Hold Storage
L	L	Х	Х	X	L	Output	Input	Real-Time B Data to A Bus
L	L	Х	H/L	Х	Н	Output	Input	Stored B Data to A Bus
Н	Н	Х	Х	L	Х	Input	Output	Real-Time A Data to B Bus
Н	Н	1	1	X	X	Input	Output	Stored A Data to B Bus
Н	Н	1	1	X (Note 8)	Х	Input	Output	Store A in both Registers
L	L	1	1	Х	X (Note 8)	Output	Input	Store B in both Registers


Note 7: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.


Note 8: Select control = L; clocks can occur simultaneously

Select control = H; clocks must be staggered in order to load both registers.

H = High Logic Level, L = Low Logic Level, X = Don't Care (Either Low or High Logic Levels, including transitions), H/L = Either Low or High Logic Level excluding transitions, ↑ = Positive-going edge of pulse.

Logic Diagram

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas

Customer Response Center Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com