**DBB PACKAGE** 

(TOP VIEW)

- **Member of the Texas Instruments** Widebus™ Family
- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown** Resistors
- Plastic 300-mil Thin Shrink Small-Outline **Package**

### description

This 1-bit to 2-bit address driver is designed for 1.65-V to 3.6-V V<sub>CC</sub> operation.

Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, the output-enable (OE) input should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ALVCH16830 is characterized for operation from -40°C to 85°C.

### **FUNCTION TABLE**

|     | INPUTS | OUT | OUTPUTS |     |  |
|-----|--------|-----|---------|-----|--|
| OE1 | OE2 A  |     | 1Yn     | 2Yn |  |
| L   | Н      | Н   | Н       | Z   |  |
| L   | Н      | L   | L       | Z   |  |
| Н   | L      | Н   | Z       | Н   |  |
| Н   | L      | L   | Z       | L   |  |
| L   | L      | Н   | Н       | Н   |  |
| L   | L      | L   | L       | L   |  |
| Н   | Н      | Χ   | z       | Z   |  |

| (TOP VIEW)      |   |          |   |          |   |                 |  |  |
|-----------------|---|----------|---|----------|---|-----------------|--|--|
| 2Y2             | Н | 1        | U | 80       | h | 1Y3             |  |  |
| 1Y2             | П | 2        |   | 79       |   | 2Y3             |  |  |
| GND             | d | 3        |   | 78       |   | GND             |  |  |
| 2Y1             | d | 4        |   | 77       | 6 | 1Y4             |  |  |
| 1Y1             | d | 5        |   | 76       | 6 | 2Y4             |  |  |
| $V_{CC}$        | d | 6        |   | 75       | þ | $V_{CC}$        |  |  |
| A1              | Ц | 7        |   | 74       | þ | 1Y5             |  |  |
| A2              | П | 8        |   | 73       |   | 2Y5             |  |  |
| GND             | Ц | 9        |   | 72       | 0 | GND             |  |  |
| A3              | Ц | 10       |   | 71       | 0 | 1Y6             |  |  |
| A4              | Ц | 11       |   | 70       | 0 | 2Y6             |  |  |
| GND             | Ц | 12       |   | 69       | Į | GND             |  |  |
| A5              | Ц | 13       |   | 68       | Ų | 1Y7             |  |  |
| A6              | Ц | 14       |   | 67       | 2 | 2Y7             |  |  |
| Vcc             | Ц | 15       |   | 66       | P | VCC             |  |  |
| A7              | Ц | 16       |   | 65       | Ľ | 1Y8             |  |  |
| A8              | Н | 17       |   | 64       | K | 2Y8             |  |  |
| GND             | Н | 18       |   | 63       | K | GND             |  |  |
| A9              | Н | 19       |   | 62       | K | 1Y9             |  |  |
| OE1             | Н | 20       |   | 61       | K | 2Y9             |  |  |
| OE2<br>A10      | H | 21       |   | 60       | K | 1Y10            |  |  |
| GND             | H | 22       |   | 59       | K | 2Y10            |  |  |
| A11             | H | 23       |   | 58<br>57 | R | GND<br>1Y11     |  |  |
| A11             | H | 24       |   | 57<br>50 | K | 2Y11            |  |  |
| V <sub>CC</sub> | H | 25<br>26 |   | 56<br>55 | K | V <sub>CC</sub> |  |  |
| A13             | H | 27       |   | 55<br>54 | K | 1Y12            |  |  |
| A14             | H | 28       |   | 53       | K | 2Y12            |  |  |
| GND             | H | 29       |   | 52       | K | GND             |  |  |
| A15             | K | 30       |   | 51       | K | 1Y13            |  |  |
| A16             | H | 31       |   | 50       | K | 2Y13            |  |  |
| GND             | H | 32       |   | 49       | K | GND             |  |  |
| A17             | ď | 33       |   | 48       | Ħ | 1Y14            |  |  |
| A18             | П | 34       |   | 47       | ħ | 2Y14            |  |  |
| $V_{CC}$        | d | 35       |   | 46       | ħ | $V_{CC}$        |  |  |
| 2Y18            | d | 36       |   | 45       | 6 | 1Y15            |  |  |
| 1Y18            | d | 37       |   | 44       | 6 | 2Y15            |  |  |
| GND             | d | 38       |   | 43       |   | GND             |  |  |
| 2Y17            |   | 39       |   | 42       | þ | 1Y16            |  |  |
| 1Y17            |   | 40       |   | 41       | þ | 2Y16            |  |  |
|                 |   |          |   |          | - |                 |  |  |

EPIC and Widebus are trademarks of Texas Instruments Incorporated.



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| –0.5 V to $V_{CC}$ + 0.5 V |
|----------------------------|
| –50 mA                     |
| –50 mA                     |
| ±50 mA                     |
| ±100 mA                    |
| 106°C/W                    |
| –65°C to 150°C             |
|                            |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
  - 2. This value is limited to 4.6 V maximum.
  - 3. The package thermal impedance is calculated in accordance with JESD 51.



# PRODUCT PREVIEW

## recommended operating conditions (see Note 4)

|                |                                    |                                              | MIN                    | MAX                  | UNIT |  |
|----------------|------------------------------------|----------------------------------------------|------------------------|----------------------|------|--|
| VCC            | Supply voltage                     |                                              | 1.65                   | 3.6                  | V    |  |
|                |                                    | V <sub>CC</sub> = 1.65 V to 1.95 V           | 0.65 × V <sub>CC</sub> |                      |      |  |
| ٧ıH            | High-level input voltage           | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 1.7                    |                      | V    |  |
|                |                                    | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$   | 2                      |                      |      |  |
|                |                                    | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |                        | $0.35 \times V_{CC}$ | СС   |  |
| $V_{IL}$       | Low-level input voltage            | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |                        | 0.7                  | V    |  |
|                |                                    | V <sub>CC</sub> = 2.7 V to 3.6 V             |                        | 0.8                  |      |  |
| ٧ <sub>I</sub> | Input voltage                      |                                              | 0                      | Vcc                  | V    |  |
| ٧o             | Output voltage                     |                                              | 0                      | VCC                  | V    |  |
|                |                                    | V <sub>CC</sub> = 1.65 V                     |                        | -4                   | mA   |  |
| 1              | High-level output current          | V <sub>CC</sub> = 2.3 V                      |                        | -12                  |      |  |
| IOH            |                                    | V <sub>CC</sub> = 2.7 V                      |                        | -12                  |      |  |
|                |                                    | V <sub>CC</sub> = 3 V                        |                        | -24                  |      |  |
|                |                                    | V <sub>CC</sub> = 1.65 V                     |                        | 4                    |      |  |
| la.            | Low-level output current           | V <sub>CC</sub> = 2.3 V                      | 12<br>12               |                      | mA   |  |
| lOL            |                                    | V <sub>CC</sub> = 2.7 V                      |                        |                      |      |  |
|                |                                    | V <sub>CC</sub> = 3 V                        |                        | 24                   |      |  |
| Δt/Δν          | Input transition rise or fall rate |                                              |                        | 10                   | ns/V |  |
| T <sub>A</sub> | Operating free-air temperature     |                                              | -40                    | 85                   | °C   |  |

NOTE 4: All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PA                    | RAMETER                 | TEST CO                                          | ONDITIONS                              | vcc             | MIN                 | TYP† | MAX  | UNIT |
|-----------------------|-------------------------|--------------------------------------------------|----------------------------------------|-----------------|---------------------|------|------|------|
|                       |                         | I <sub>OH</sub> = -100 μA                        |                                        | 1.65 V to 3.6 V | V <sub>CC</sub> -0. | .2   |      |      |
|                       | I <sub>OH</sub> = -4 mA |                                                  | 1.65 V                                 | 1.2             |                     |      |      |      |
|                       |                         | I <sub>OH</sub> = -6 mA                          |                                        | 2.3 V           | 2                   |      |      |      |
| Vон                   |                         |                                                  |                                        | 2.3 V           | 1.7                 |      |      | V    |
|                       |                         | $I_{OH} = -12 \text{ mA}$                        |                                        | 2.7 V           | 2.2                 |      |      |      |
|                       |                         |                                                  |                                        | 3 V             | 2.4                 |      |      |      |
|                       |                         | I <sub>OH</sub> = -24 mA                         |                                        | 3 V             | 2                   |      |      |      |
|                       |                         | I <sub>OL</sub> = 100 μA                         |                                        | 1.65 V to 3.6 V |                     |      | 0.2  |      |
|                       |                         | I <sub>OL</sub> = 4 mA                           |                                        | 1.65 V          |                     |      | 0.45 |      |
| \/a:                  |                         | I <sub>OL</sub> = 6 mA                           |                                        | 2.3 V           |                     |      | 0.4  | 1/   |
| VOL                   |                         | lo 12 mΔ                                         | 2.3 V                                  |                 |                     | 0.7  | V    |      |
|                       |                         | I <sub>OL</sub> = 12 mA                          | 2.7 V                                  |                 |                     | 0.4  |      |      |
|                       |                         | I <sub>OL</sub> = 24 mA                          | 3 V                                    |                 |                     | 0.55 |      |      |
| lį                    |                         | V <sub>I</sub> = V <sub>CC</sub> or GND          |                                        | 3.6 V           |                     |      | ±5   | μΑ   |
|                       |                         | V <sub>I</sub> = 0.58 V                          | 1.65 V                                 | 25              |                     |      |      |      |
|                       |                         | V <sub>I</sub> = 1.07 V                          | 1.65 V                                 | -25             |                     |      | μΑ   |      |
|                       |                         | V <sub>I</sub> = 0.7 V                           | 2.3 V                                  | 45              |                     |      |      |      |
| I <sub>I</sub> (hold) |                         | V <sub>I</sub> = 1.7 V                           | 2.3 V                                  | -45             |                     |      |      |      |
|                       |                         | V <sub>I</sub> = 0.8 V                           |                                        | 3 V             | 75                  |      |      |      |
|                       |                         | V <sub>I</sub> = 2 V                             | 3 V                                    | -75             |                     |      |      |      |
|                       |                         | $V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$ | 3.6 V                                  |                 |                     | ±500 |      |      |
| loz                   |                         | $V_O = V_{CC}$ or GND                            |                                        | 3.6 V           |                     |      | ±10  | μΑ   |
| Icc                   |                         | $V_I = V_{CC}$ or GND,                           | I <sub>O</sub> = 0                     | 3.6 V           |                     |      | 40   | μΑ   |
| ∆lcc                  |                         | One input at V <sub>CC</sub> – 0.6 V,            | Other inputs at V <sub>CC</sub> or GND | 3 V to 3.6 V    |                     |      | 750  | μΑ   |
|                       | Control inputs          | VI = Voc or GND                                  |                                        | 3.3 V           |                     |      |      | n.E  |
| Ci                    | Data inputs             | V <sub>I</sub> = V <sub>CC</sub> or GND          |                                        |                 |                     |      |      | pF   |
| Co                    | Outputs                 | $V_O = V_{CC}$ or GND                            |                                        | 3.3 V           |                     |      |      | pF   |

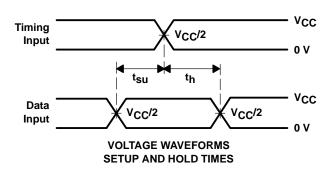
<sup>&</sup>lt;sup>†</sup> All typical values are at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

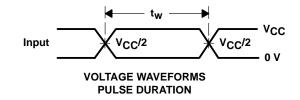
## switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

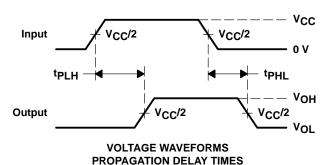
| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 1.8 V | V <sub>CC</sub> = 2.5 V<br>± 0.2 V | V <sub>CC</sub> = 2.7 V | V <sub>CC</sub> = 3.3 V<br>± 0.3 V | UNIT |
|------------------|-----------------|----------------|-------------------------|------------------------------------|-------------------------|------------------------------------|------|
|                  |                 | (001701)       | TYP                     | MIN MAX                            | MIN MAX                 | MIN MAX                            |      |
| t <sub>pd</sub>  | А               | Y              |                         |                                    |                         |                                    | ns   |
| t <sub>en</sub>  | ŌĒ              | Υ              |                         |                                    |                         |                                    | ns   |
| <sup>t</sup> dis | ŌĒ              | Y              |                         |                                    |                         |                                    | ns   |

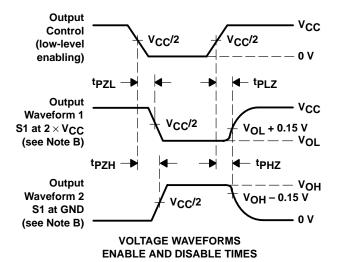

<sup>‡</sup> This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.


## PRODUCT PREVIEW


## operating characteristics, T<sub>A</sub> = 25°C


| PARAMETER       |                   | TEST CONDITIONS  | V <sub>CC</sub> = 1.8 V<br>TYP | V <sub>CC</sub> = 2.5 V<br>TYP | V <sub>CC</sub> = 3.3 V<br>TYP | UNIT |    |
|-----------------|-------------------|------------------|--------------------------------|--------------------------------|--------------------------------|------|----|
| C <sub>pd</sub> | Power dissipation | Outputs enabled  | C <sub>L</sub> = 0, f = 10 MH  | 7                              |                                |      | ρF |
| Фра             | capacitance       | Outputs disabled | 0L = 0, 1 = 10 mm              |                                |                                |      | ۲۱ |


## PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V}$



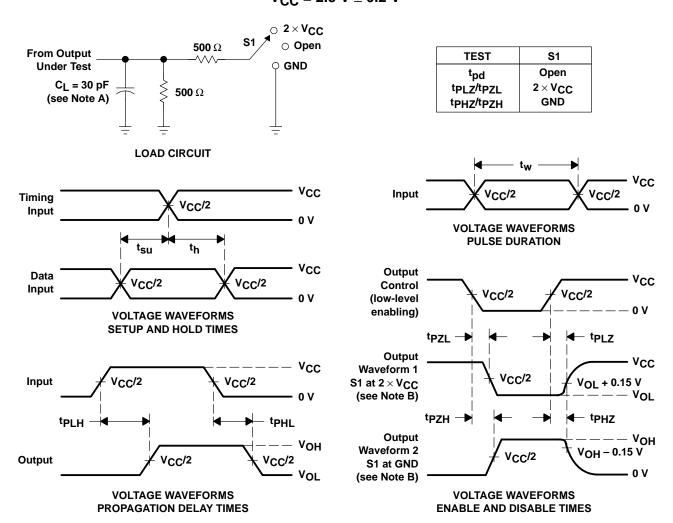












NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \Omega$ ,  $t_f \leq$  2 ns,  $t_f \leq$  2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms



## PARAMETER MEASUREMENT INFORMATION $V_{CC}$ = 2.5 V $\pm$ 0.2 V



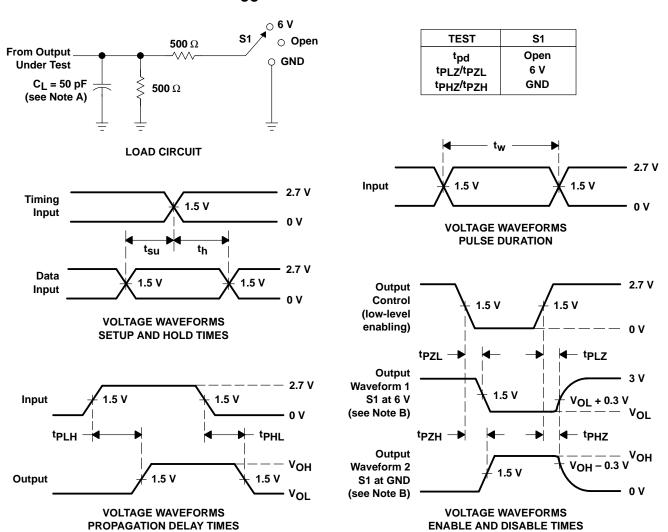

- NOTES: A. C<sub>L</sub> includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50~\Omega$ ,  $t_f \leq$  2 ns,  $t_f \leq$  2 ns.
  - D. The outputs are measured one at a time with one transition per measurement.
  - E. tpLz and tpHz are the same as tdis.
  - F. tpzL and tpzH are the same as ten.
  - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms



## PRODUCT PREVIEW

## PARAMETER MEASUREMENT INFORMATION $V_{CC}$ = 2.7 V AND 3.3 V $\pm$ 0.3 V



- NOTES: A. C<sub>L</sub> includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \,\Omega$ ,  $t_r \leq 2.5 \,\text{ns}$ ,  $t_f \leq 2.5 \,\text{ns}$ .
  - D. The outputs are measured one at a time with one transition per measurement.
  - E. tpLz and tpHz are the same as tdis.
  - F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
  - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms