
- Single Down/Up Count-Control Line
- Look-Ahead Circuitry Enhances Speed of Cascaded Counters
- Fully Synchronous in Count Modes
- Asynchronously Presettable With Load Control
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

#### description

The 'ALS191A are synchronous 4-bit reversible up/down binary counters. Synchronous counting operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.

The outputs of the four flip-flops are triggered on a low-to-high-level transition of the clock (CLK) input if the count enable (CTEN) input is low. A high at  $\overrightarrow{\text{CTEN}}$  inhibits counting. The direction of the count is determined by the level of the down/up (D/U) input. When D/U is low, the counter counts up, and when D/U is high, the counter counts down.



NC - No internal connection

These counters feature a fully independent clock circuit. Changes at the control inputs ( $\overline{CTEN}$  and  $D/\overline{U}$ ) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter is dictated solely by the conditions meeting the stable setup and hold times.

These counters are fully programmable. Each output can be preset to either level by placing a low on the  $\overline{LOAD}$  input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

CLK, D/U, and LOAD are buffered to lower the drive requirement, which significantly reduces the loading on (current required by) clock drivers, for long parallel words.

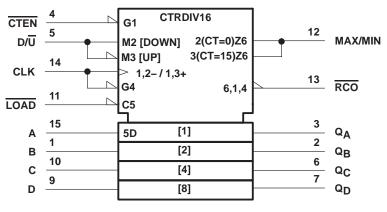


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



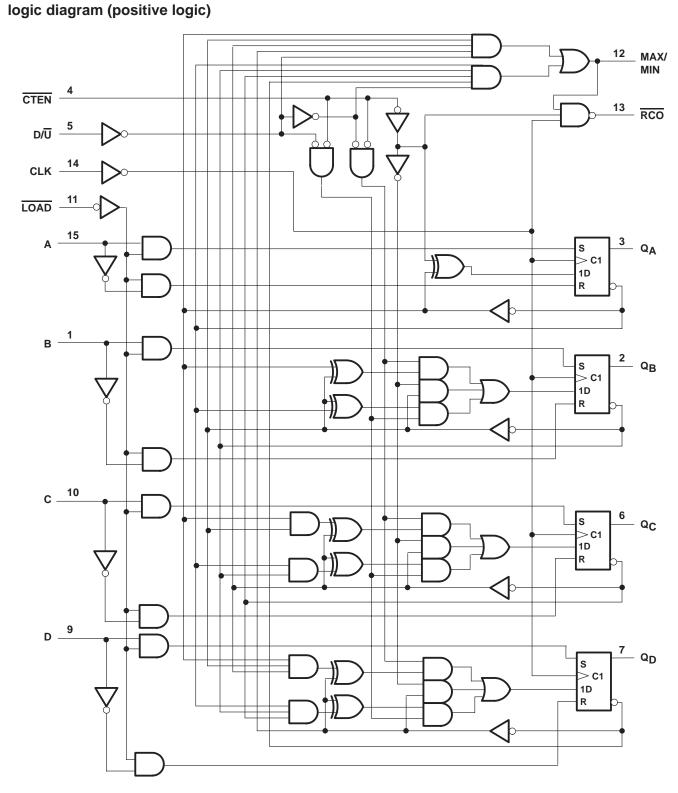
Copyright © 1996, Texas Instruments Incorporated


SDAS210C - DECEMBER 1982 - REVISED JULY 1996

#### description (continued)

Two outputs are available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is minimum (0) counting down or maximum (15) counting up. The ripple-clock output (RCO) produces a low-level output pulse under those same conditions, but only while the clock input is low. The counter easily can be cascaded by feeding the ripple-clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count (MAX/MIN) output can be used to accomplish look ahead for high-speed operation.

The SN54ALS191A is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C. The SN74ALS191A is characterized for operation from 0°C to 70°C.


#### logic symbol<sup>†</sup>



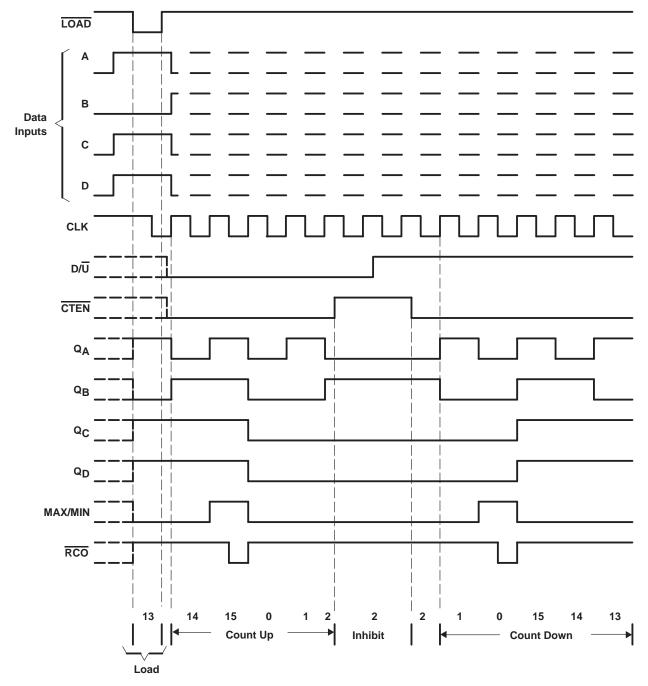
<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.



SDAS210C - DECEMBER 1982 - REVISED JULY 1996



Pin numbers shown are for the D, J, and N packages.




SDAS210C - DECEMBER 1982 - REVISED JULY 1996

#### typical load, count, and inhibit sequences

The following sequence is illustrated below:

- 1. Load (preset) to binary 13
- 2. Count up to 14, 15 (maximum), 0, 1, and 2
- 3. Inhibit
- 4. Count down to 1, 0 (minimum), 15, 14, and 13





SDAS210C - DECEMBER 1982 - REVISED JULY 1996

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub>                                    |                |
|--------------------------------------------------------------------|----------------|
| Input voltage, V <sub>1</sub>                                      | /V             |
| Operating free-air temperature range, T <sub>A</sub> : SN54ALS191A | –55°C to 125°C |
| SN74ALS191A                                                        | 0°C to 70°C    |
| Storage temperature range, T <sub>stg</sub>                        | -65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### recommended operating conditions

|                 |                                |                                       | SN  | SN54ALS191A |      |      | SN74ALS191A |      |      |  |
|-----------------|--------------------------------|---------------------------------------|-----|-------------|------|------|-------------|------|------|--|
|                 |                                |                                       | MIN | NOM         | MAX  | MIN  | NOM         | MAX  | UNIT |  |
| VCC             | Supply voltage                 |                                       | 4.5 | 5           | 5.5  | 4.5  | 5           | 5.5  | V    |  |
| VIH             | High-level input voltage       |                                       | 2   |             |      | 2    |             |      | V    |  |
| $V_{IL}$        | Low-level input voltage        |                                       |     |             | 0.7  |      |             | 0.8  | V    |  |
| ЮН              | High-level output current      |                                       |     |             | -0.4 |      |             | -0.4 | mA   |  |
| I <sub>OL</sub> | Low-level output current       |                                       |     |             | 4    |      |             | 8    | mA   |  |
| fclock          | Clock frequency                |                                       | 0   |             | 20   | 0    |             | 30   | MHz  |  |
|                 |                                | CLK high or low                       | 20  |             |      | 16.5 |             |      |      |  |
| tw              | Pulse duration                 | LOAD low                              | 25  |             |      | 20   |             |      | ns   |  |
|                 |                                | Data before LOAD↑                     | 25  |             |      | 20   |             |      |      |  |
|                 | Catura tima                    | CTEN before CLK <sup>↑</sup>          | 45  |             |      | 20   |             |      | ns   |  |
| t <sub>su</sub> | Setup time                     | D/U before CLK↑                       | 30  |             |      | 20   |             |      |      |  |
|                 |                                | LOAD inactive before CLK <sup>↑</sup> | 20  |             |      | 20   |             |      |      |  |
|                 |                                | Data after LOAD↑                      | 5   |             |      | 5    |             |      |      |  |
| t <sub>h</sub>  | Hold time                      | CTEN after CLK <sup>↑</sup>           | 0   |             |      | 0    |             |      | ns   |  |
|                 |                                | D/U after CLK↑                        | 0   |             |      | 0    |             |      |      |  |
| T <sub>A</sub>  | Operating free-air temperature |                                       | -55 |             | 125  | 0    |             | 70   | °C   |  |



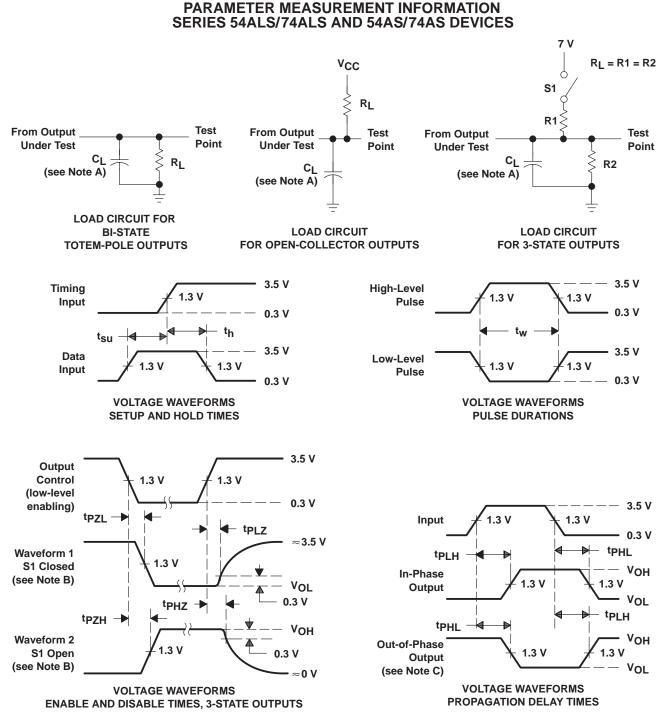
SDAS210C - DECEMBER 1982 - REVISED JULY 1996

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                            | SN5                        | 4ALS19              | 1 <b>A</b> | SN7  | · · · · · · · · · · · · · · · · · · · |      |       |    |  |
|-----------------|----------------------------|----------------------------|---------------------|------------|------|---------------------------------------|------|-------|----|--|
| PARAMETER       | TEST CO                    | MIN                        | TYP†                | MAX        | MIN  | TYP†                                  | MAX  | UNIT  |    |  |
| VIK             | V <sub>CC</sub> = 4.5 V,   | lj = – 18 mA               |                     |            | -1.5 |                                       |      | -1.5  | V  |  |
| VOH             | $V_{CC}$ = 4.5 V to 5.5 V, | $I_{OH} = -0.4 \text{ mA}$ | V <sub>CC</sub> - 2 | 2          |      | V <sub>CC</sub> – 2                   | 2    |       |    |  |
|                 | N 451                      | $I_{OL} = 4 \text{ mA}$    |                     | 0.25       | 0.4  |                                       | 0.25 | 0.4   | V  |  |
| VOL             | $V_{CC} = 4.5 V$           | $I_{OL} = 8 \text{ mA}$    |                     |            |      | 0.35 0.5                              |      | 0.5   | ]  |  |
| lj              | V <sub>CC</sub> = 5.5 V,   | $V_{I} = 7 V$              |                     |            | 0.2  |                                       |      | 0.1   | mA |  |
| Ιн              | V <sub>CC</sub> = 5.5 V,   | VI = 2.7 V                 |                     |            | 20   |                                       |      | 20    | μA |  |
| CTEN or CLK     |                            | N 0.4 M                    |                     |            | -0.2 |                                       |      | -0.2  |    |  |
| IIL All others  | V <sub>CC</sub> = 5.5 V,   | V <sub>I</sub> = 0.4 V     |                     |            | -0.2 |                                       |      | -0.1  | mA |  |
| 10 <sup>‡</sup> | V <sub>CC</sub> = 5.5 V,   | V <sub>O</sub> = 2.25 V    | -20                 |            | -112 | -30                                   |      | - 112 | mA |  |
| ICC             | V <sub>CC</sub> = 5.5 V,   | All inputs at 0            |                     | 12         | 22   |                                       | 12   | 22    | mA |  |

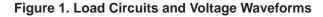
<sup>†</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>‡</sup>The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.


#### switching characteristics (see Figure 1)

| PARAMETER        | FROM<br>(OUTPUT) | то<br>(оитрит) | V <sub>C</sub><br>C <sub>L</sub><br>R <sub>L</sub><br>T <sub>A</sub> | UNIT   |        |       |     |
|------------------|------------------|----------------|----------------------------------------------------------------------|--------|--------|-------|-----|
|                  | (,               | ()             | SN54AL                                                               | .S191A | SN74AL | S191A |     |
|                  |                  |                | MIN                                                                  | MAX    | MIN    | MAX   |     |
| f <sub>max</sub> |                  |                | 20                                                                   |        | 30     |       | MHz |
| <sup>t</sup> PLH | LOAD             | AmirO          | 7                                                                    | 37     | 7      | 30    | 20  |
| <sup>t</sup> PHL | LOAD             | Any Q          | 8                                                                    | 34     | 8      | 30    | ns  |
| <sup>t</sup> PLH |                  | Amy O          | 3                                                                    | 25     | 3      | 21    |     |
| t <sub>PHL</sub> | A, B, C, D       | Any Q          | 4                                                                    | 25     | 4      | 21    | ns  |
| <sup>t</sup> PLH |                  | <b>D</b> 00    | 5                                                                    | 24     | 5      | 20    | ns  |
| <sup>t</sup> PHL | CLK              | RCO            | 5                                                                    | 25     | 5      | 20    |     |
| <sup>t</sup> PLH |                  | A              | 3                                                                    | 26     | 3      | 18    |     |
| <sup>t</sup> PHL | CLK              | Any Q          | 3                                                                    | 22     | 3      | 18    | ns  |
| <sup>t</sup> PLH | 01/              |                | 8                                                                    | 37     | 8      | 31    |     |
| <sup>t</sup> PHL | CLK              | MAX/MIN        | 8                                                                    | 34     | 8      | 31    | ns  |
| <sup>t</sup> PLH |                  | <b></b>        | 8                                                                    | 45     | 8      | 37    |     |
| <sup>t</sup> PHL | D/U              | RCO            | 10                                                                   | 36     | 10     | 28    | ns  |
| <sup>t</sup> PLH | D/U              |                | 8                                                                    | 35     | 8      | 25    |     |
| <sup>t</sup> PHL | D/U              | MAX/MIN        | 8                                                                    | 30     | 8      | 25    | ns  |
| <sup>t</sup> PLH | CTEN             | RCO            | 4                                                                    | 21     | 4      | 18    | -   |
| <sup>t</sup> PHL | GTEN             | RUU            | 4                                                                    | 23     | 4      | 18    | ns  |

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.




SDAS210C - DECEMBER 1982 - REVISED JULY 1996



NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR  $\leq$  1 MHz, t<sub>r</sub> = t<sub>f</sub> = 2 ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.







25-Sep-2013

## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5)                  | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|------------------------------------------|---------|
| 5962-86840012A   | ACTIVE        | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>86840012A<br>SNJ54ALS<br>191AFK | Samples |
| 5962-8684001EA   | ACTIVE        | CDIP         | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-8684001EA<br>SNJ54ALS191AJ          | Samples |
| 5962-8684001FA   | ACTIVE        | CFP          | W                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-8684001FA<br>SNJ54ALS191AW          | Samples |
| SN54ALS191AJ     | ACTIVE        | CDIP         | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | SN54ALS191AJ                             | Samples |
| SN74ALS191AD     | ACTIVE        | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | ALS191A                                  | Samples |
| SN74ALS191ADE4   | ACTIVE        | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | ALS191A                                  | Samples |
| SN74ALS191ADG4   | ACTIVE        | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | ALS191A                                  | Samples |
| SN74ALS191ADR    | ACTIVE        | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | ALS191A                                  | Samples |
| SN74ALS191ADRE4  | ACTIVE        | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | ALS191A                                  | Samples |
| SN74ALS191ADRG4  | ACTIVE        | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | ALS191A                                  | Samples |
| SN74ALS191AN     | ACTIVE        | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | 0 to 70      | SN74ALS191AN                             | Samples |
| SN74ALS191ANE4   | ACTIVE        | PDIP         | Ν                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | 0 to 70      | SN74ALS191AN                             | Samples |
| SNJ54ALS191AFK   | ACTIVE        | LCCC         | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type | -55 to 125   | 5962-<br>86840012A<br>SNJ54ALS<br>191AFK | Samples |
| SNJ54ALS191AJ    | ACTIVE        | CDIP         | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-8684001EA<br>SNJ54ALS191AJ          | Samples |
| SNJ54ALS191AW    | ACTIVE        | CFP          | W                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-8684001FA<br>SNJ54ALS191AW          | Samples |



www.ti.com

25-Sep-2013

<sup>(1)</sup> The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54ALS191A, SN74ALS191A :

Catalog: SN74ALS191A

Military: SN54ALS191A

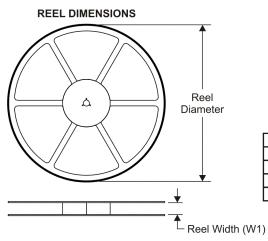
NOTE: Qualified Version Definitions:

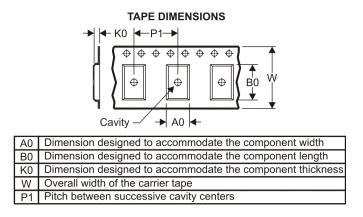


www.ti.com

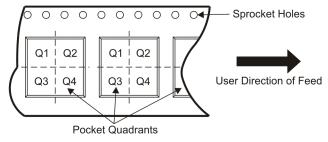
## PACKAGE OPTION ADDENDUM

25-Sep-2013


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


# PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

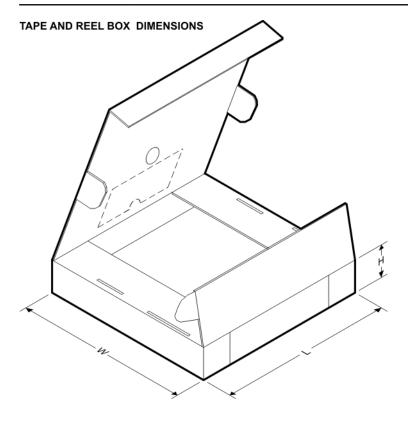
### TAPE AND REEL INFORMATION





## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                     | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74ALS191ADR              | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

23-Jul-2010

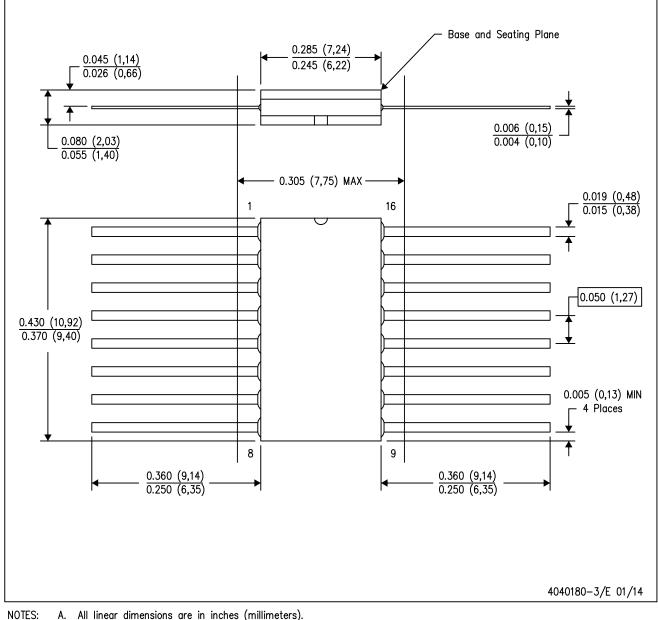


\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74ALS191ADR | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |

J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

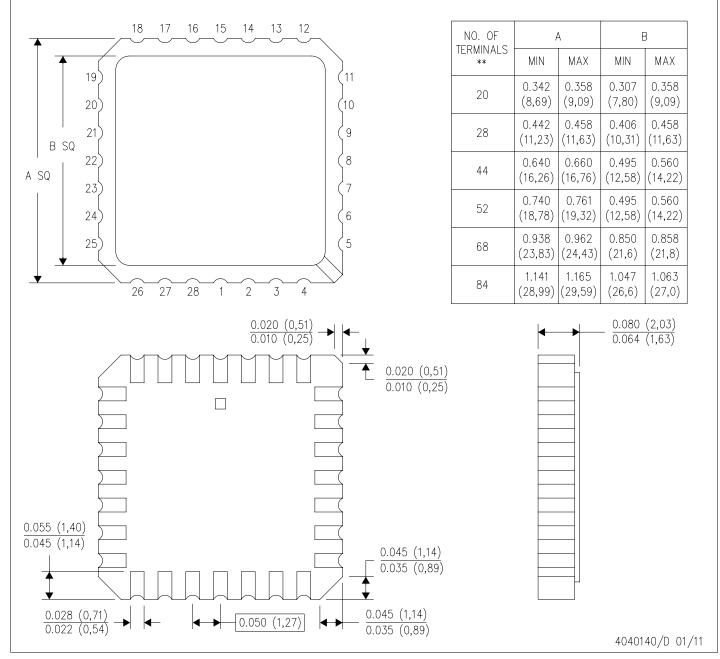



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK




- A. All linear dimensions are in inches (millimeters).
  - B. This drawing is subject to change without notice.
  - C. This package can be hermetically sealed with a ceramic lid using glass frit.
  - D. Index point is provided on cap for terminal identification only.
  - E. Falls within MIL STD 1835 GDFP2-F16 and JEDEC MO-092AC



LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N\*\*) 28 TERMINAL SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. Falls within JEDEC MS-004



## N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated