STRH12P10ESY1 STRH12P10ESY3 # P-channel 100V - 0.265Ω - TO-257AA Rad-hard low gate charge STripFET™ Power MOSFET #### **Features** | Туре | V _{DSS} | |---------------|------------------| | STRH12P10ESY1 | 100 V | | STRH12P10ESY3 | 100 V | - Low R_{DS(on)} - Fast switching - Single event effect (SEE) hardned - Low total gate charge - Light weight - 100% avalanche tested - Application oriented characterization - Hermetically sealed - Heavy ion SOA - 100 kRad TID - SEL & SEGR with 34Mev/cm²/mg LET ions ### **Applications** - Satellite - High reliability ### **Description** This Power MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to sustain high TID and provide immunity to heavy ion effects. It is therefore suitable as power switch in mainly highefficiency DC-DC converters. It is also intended for any application with low gate charge drive requirements. Table 1. **Device summary** ^{1.} Mil temp range Figure 1. Internal schematic diagram ^{2.} Space flights parts (full ESCC flow screening) Contents STRH12P10ESY3 # **Contents** | 1 | Elect | trical ratings | 3 | |---|-------|-------------------------------------|------------| | 2 | Elect | trical characteristics | 4 | | | 2.1 | Pre-irradiation | 4 | | | 2.2 | Post-irradiation | 5 | | | 2.3 | Electrical characteristics (curves) | 7 | | 3 | Test | circuit | 9 | | 4 | Pack | age mechanical data1 | I 0 | | 5 | Revi | sion history | 12 | STRH12P10ESY3 Electrical ratings # 1 Electrical ratings Table 2. Absolute maximum ratings (pre-irradiation) | Symbol | Parameter | Value | Unit | |--------------------------------|--|------------|------| | V_{DS} | Drain-source voltage (V _{GS} = 0) | 100 | V | | V _{GS} | Gate-source voltage | ±18 | V | | I _D ⁽¹⁾ | Drain current (continuous) at T _C = 25°C | 12 | Α | | I _D ⁽¹⁾ | Drain current (continuous) at T _C = 100°C | 7.5 | Α | | I _{DM} ⁽²⁾ | Drain current (pulsed) | 48 | Α | | P _{TOT} (1) | Total dissipation at T _C = 25°C | 75 | W | | dv/dt (3) | Peak diode recovery voltage slope | 2.4 | V/ns | | T _{stg} | Storage temperature | -55 to 150 | °C | | T _j | Max. operating junction temperature | 150 | °C | ^{1.} Rated according to the Rthj-case + Rthc-s Table 3. Thermal data | Symbol | Parameter | Value | Unit | |-----------|----------------------------------|-------|------| | Rthj-case | Thermal resistance junction-case | 1.47 | °C/W | | Rthc-s | Case-to-sink | 0.2 | °C/W | | Rthj-amb | Thermal resistance junction -amb | 62.5 | °C/W | Table 4. Avalanche characteristics | Symbol | Parameter | Value | Unit | |--------------------------------|---|-------|------| | I _{AR} | Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max) | 6 | Α | | E _{AS} | Single pulse avalanche energy (starting Tj=25°C, I _D =I _{AR} , V _{DD} =50 V) | 597 | mJ | | E _{AR} ⁽¹⁾ | Repetitive avalanche | 17 | mJ | ^{1.} Pulse number = 10; f= 10 KHz; D.C. = 50% Note: For the P-channel MOSFET actual polarity of voltages and current has to be reversed ^{2.} Pulse width limited by safe operating area ^{3.} $I_{SD} \le 12 \text{ A}$, di/dt $\le 36 \text{ A/}\mu\text{s}$, $V_{DD} = 80\%V_{(BR)DSS}$ Electrical characteristics STRH12P10ESY3 # 2 Electrical characteristics (T_{CASE} = 25°C unless otherwise specified) ### 2.1 Pre-irradiation Table 5. On/off states | Symbol | Parameter | Test conditions | Min. | Тур. | Max | Unit | |----------------------|---|---|------|-------|------|------| | I _{DSS} | Zero gate voltage drain current (V _{GS} = 0) | 80% BV _{Dss} | | | 10 | μΑ | | I _{GSS} | Gate body leakage current (V _{DS} = 0) | V _{GS} = ±18 V | | | ±100 | nA | | V _{(BR)DSS} | Drain-source breakdown voltage | $I_D = 250 \mu A, V_{GS} = 0V$ | 100 | | | V | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$ | 2 | | 4.5 | V | | R _{DS(on)} | Static drain-source on resistance | V _{GS} = 12 V, I _D = 12 A | | 0.265 | 0.3 | Ω | Table 6. Dynamic | Symbol | Parameter | Test conditions | Min. | Тур. | Max | Unit | |--|---|--|------------------------|---------------------|----------------------|----------------| | C _{iss}
C _{oss}
C _{rss} | Input capacitance Output capacitance Reverse transfer capacitance | $V_{DS} = 25 \text{ V, f=1MHz,}$
$V_{GS} = 0$ | 1042
126.4
52.48 | 1303
158
65.6 | 1563
189
78.72 | pF
pF
pF | | Q _g
Q _{gs}
Q _{gd} | Total gate charge
Gate-source charge
Gate-drain charge | | 35.2
3.6
8 | 44
4.5
10 | 52.8
5.4
12 | nC
nC
nC | | R _G | Gate input resistance | | 0.8 | 1 | 1.2 | Ω | Table 7. Switching times | Symbol | Parameter | Test conditions | Min. | Тур. | Max | Unit | |---------------------|---------------------|--|------|------|------|------| | t _{d(on)} | Turn-on delay time | | 15.2 | 19 | 22.8 | ns | | t _r | Rise time | $V_{DD} = 80 \text{ V}, I_{D} = 12 \text{ A},$ | 7.2 | 9 | 10.8 | ns | | t _{d(off)} | Turn-off-delay time | $R_G = 4.7 \Omega$, $V_{GS} = 12 V$ | 29.6 | 37 | 44.4 | ns | | t _f | Fall time | | 5.6 | 7 | 8.4 | ns | | Symbol | Parameter | Test conditions | Min. | Тур. | Max | Unit | |--|--|--|------|------------------|----------|---------------| | I _{SD} | Source-drain current Source-drain current (pulsed) | | | | 12
48 | A
A | | V _{SD} ⁽²⁾ | Forward on voltage | I _{SD} = 12 A, V _{GS} = 0 | | | 1.1 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse recovery time Reverse recovery charge Reverse recovery current | I _{SD} = 12 A, di/dt = 100 A/μs
V _{DD} = 9 V, Tj = 25°C | 198 | 248
2.3
19 | 297 | ns
μC
A | | t _{rr}
Q _{rr}
I _{RRM} | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD} = 12A$, di/dt = 100A/ μ s
$V_{DD} = 9V$, Tj = 150°C | 240 | 300
3
22 | 360 | ns
μC
Α | Table 8. Source drain diode #### 2.2 Post-irradiation The ST rad-hard Power MOSFETs are tested to verify the radiation capability. The technology is extremely resistant to assurance well functioning of the device inside the radiation environments. Every manufacturing lot is tested for total ionizing dose. (@Tj=25°C up to 100Krad $^{(a)}$) Table 9. On/off states | Symbol | Parameter | Test conditions | Min. | Тур. | Max | Unit | |----------------------|---|---|------|-------|------|------| | I _{DSS} | Zero gate voltage drain current (V _{GS} = 0) | 80% BV _{Dss} | | | 10 | μΑ | | I _{GSS} | Gate body leakage current (V _{DS} = 0) | V _{GS} = ±18 V | | | ±100 | nA | | V _{(BR)DSS} | Drain-source breakdown voltage | $I_D = 250 \mu A, V_{GS} = 0$ | 100 | | | ٧ | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$ | 2 | | 4.5 | V | | R _{DS(on)} | Static drain-source on resistance | V _{GS} = 12 V, I _D = 12 A | | 0.265 | 0.3 | Ω | a. According to ESCC 22900 specification, Co60 gamma rays, dose rate:0.1rad/sec. ^{1.} Pulse width limited by safe operating area ^{2.} Pulsed: pulse duration = 300µs, duty cycle 1.5% Electrical characteristics STRH12P10ESY3 Table 10. Single event effect, SOA⁽¹⁾ | | lon | Let (Mev/(mg/cm2)) | Energy (MeV) | Range (µm) | V _{DS} (V) @V _{GS} 0V | |---|-----|--------------------|--------------|------------|---| | ľ | Kr | 34 | 316 | 43 | 100 | | | Xe | 55.9 | 459 | 43 | 80 | Rad-Hard Power MOSFETs have been characterized in heavy ion environment for single event effect (SEE). Single event effect characterization is illustrated Figure 2. Bias condition during radiation Table 11. Source drain diode | Symbol | Parameter | Test conditions | Min. | Тур. | Max | Unit | |--|--|---|------|------------------|----------|---------------| | I _{SD} | Source-drain current
Source-drain current (pulsed) | | | | 12
48 | A
A | | V _{SD} ⁽²⁾ | Forward on voltage | I _{SD} = 12 A, V _{GS} = 0 | | | 1.1 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse recovery time Reverse recovery charge Reverse recovery current | I_{SD} = 12 A, di/dt = 100 A/µs V_{DD} = 9 V, Tj = 25°C | 198 | 248
2.3
19 | 297 | ns
μC
A | | t _{rr}
Q _{rr}
I _{RRM} | Reverse recovery time Reverse recovery charge Reverse recovery current | I _{SD} = 12 A, di/dt = 100 A/μs
V _{DD} = 9 V, Tj = 150°C | 240 | 300
3
22 | 360 | ns
µC
A | ^{1.} Pulse width limited by safe operating area ^{2.} Pulsed: pulse duration = $300\mu s$, duty cycle 1.5% ### 2.3 Electrical characteristics (curves) Figure 3. Safe operating area Figure 4. Thermal impedance Figure 5. Output characteristics Figure 6. Transfer characteristics Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations Electrical characteristics STRH12P10ESY3 Figure 9. Normalized BV_{DSS} vs temperature Figure 10. Static drain-source on resistance Figure 11. Normalized gate threshold voltage Figure 12. Normalized on resistance vs vs temperature temperature Figure 13. Source drain-diode forward characteristics 8/13 STRH12P10ESY3 Test circuit ## 3 Test circuit Figure 14. Switching times test circuit for resistive load ⁽¹⁾ 1. Max driver V_{GS} slope = 1V/ns (no DUT) Figure 15. Unclamped inductive load test circuit (single pulse and repetitive) # 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com #### **TO-257AA MECHANICAL DATA** | DIM. | mm. | | | inch | | | |------|------|-------|------|-------|-------|-------| | | MIN. | TYP | MAX. | MIN. | TYP. | MAX. | | Α | | 10.54 | | | 0.415 | | | В | | 10.54 | | | 0.415 | | | С | | 16.64 | | | 0.655 | | | D | 4.7 | | 5.33 | 0.185 | | 0.210 | | Е | | 1.02 | | | 0.40 | | | F | 3.56 | 3.68 | 3.81 | 0.140 | 0.145 | 0.150 | | G | | 13.51 | | | 0.532 | | | Н | | 5.26 | | | 0.207 | | | I | | 0.76 | | | 0.030 | | | J | | 3.05 | | | 0.120 | | | K | | 2.54 | | | 0.100 | | | L | 15.2 | | 16.5 | 0.598 | | 0.650 | | М | | 2.29 | | | 0.090 | | | N | | | 0.71 | | | 0.028 | | R | | 1.65 | | | 0.065 | | Revision history STRH12P10ESY3 # 5 Revision history Table 12. Document revision history | Date | Revision | Changes | | |---------------|----------|---|--| | 20-Dec-2006 | 1 | First release | | | 19-Mar-2007 | 2 | Complete version | | | 19-Nov-2007 3 | | Note 2 on device summary has been corrected Added figures: 2 and 15. Updated values on tables: 6, 7, 8 and 11 Minor text changes to improve readability | | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com