Am2927/Am2928

Quad Three-State Bus Transceivers With Clock Enable

DISTINCTIVE CHARACTERISTICS

- Three-state bus driver outputs can sink 48mA, and Three-state receiver outputs sink 24mA — both at 0.5V max.
- · D-type register on drivers
- Latch output on Am2927; Registered output on Am2928
- Output data to input wrap around gating; Input register to output transfer gating with or without driving data bus
- · Clock enabled registers
- 3.0V minimum V_{OH} for direct interface to MOS microprocessors

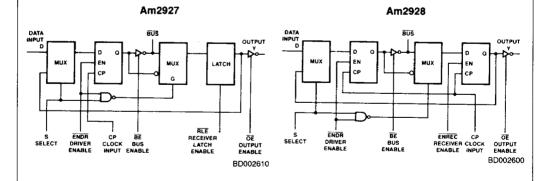
GENERAL DESCRIPTION

The Am2927 and Am2928 are high-performance, low-power Schottky, quad bus transceivers intended for use in bipolar or MOS microprocessor system applications.

Both devices feature register enable lines which function as clock enables without introducing gate delay in the clock inputs. The four transceivers share common enables, clock, select and three-state control lines.

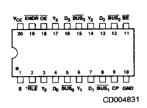
The Am2927 consists of four D-type edge-triggered flip-flops. Each flip-flop output is connected to a three-state data bus driver and separately to the input of a corresponding receiver latch input. The receiver latch can select input from the driver or the data bus. The select line determines the source of input data for the bus driver choosing between input data or data recirculated from the receiver output. The receiver output also has a three-state output buffer.

The combination of the select input, S, the driver input enable, ENDR, and the receiver latch enable, RLE, provide seven different data path operating modes not available in


other transceivers. For example, transmitted data can be stored in the receiver for subsequent retransmission. Also, received data can be output to the system and simultaneously fed back to the driver input.

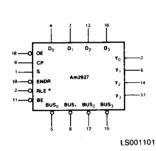
The Am2928 is similar to the Am2927, but with a D-type edge-triggered register in the receiver and a receiver enable, ENREC, which functions as a common clock enable.

Data from each D input is inverted at the bus output. Likewise, data at the bus input is inverted at the receiver output.

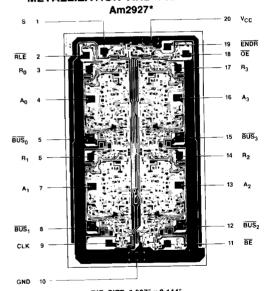

All three-state controls and enable lines are active low (the Am2927 receiver latch is transparent when $\overline{\rm RLE}$ is LOW). The select input, S, determines whether the enabled driver input accepts data from the data input, D, or from the corresponding receiver output, Y. Similarly, the select line determines whether the receiver accepts input data from the data bus, or the driver output.

BLOCK DIAGRAM

CONNECTION DIAGRAM Top View


D-20-1

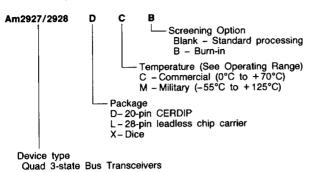
L-28-1


Note: Pin 1 is marked for orientation *ENREC for Am2928

LOGIC SYMBOL

*ENREC for Am2928

METALLIZATION AND PAD LAYOUT



DIE SIZE 0.087" x 0.144"

NOTE: The Am2928 is similar to the
Am2927, but with a D-type edge-triggered
register in the receiver and a receiver enable, ENREC, which functions as a common
clock enable.

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Con	nbinations
Am2927 Am2928	DC, DM LC, LCB, LM, LMB XC, XM

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION

Pin No.	Name	1/0	Description
3	СР	ı	Clock Pulse to internal registers enters data on the LOW-to-HIGH transition.
11	BE	ī	Bus Enable. When Bus Enable is LOW the four drivers drive the BUS outputs.
i, 8, i2, 15	BUS ₀ , BUS ₁ , BUS ₂ , BUS ₃	1/0	The four driver outputs and receiver inputs.
i, 7, i3, 16	D ₀ , D ₁ , D ₂ , D ₃	1	The four driver data inputs inverting from D to BUS.
3, 6, 14, 17	Y ₀ , Y ₁ , Y ₂ , Y ₃ ,	0	The four receiver data outputs inverting from BUS to Y.
	s	1	Select input controls data path modes in conjunction with ENDR and RLE (or ENREC).
8	ŌĒ	1 -	Output Enable. When Output Enable is LOW the four receiver outputs Y are active.
19	ENDR	ı	Driver Enable. Common clock enable for the input register. Allows the data on the D inputs to be loaded into the driver register on the clock LOW-to-High transition.
2	RLE	1	Receiver Latch Enable (Am2927 only). When Receiver Latch Enable is LOW, the four receiver latches are transparent. The latches hold received data when RLE is HIGH.
2	ENREC	1	Receiver Enable (Am2928 only). Common clock enable for the receiver register. Allows the BUS driver or previous receiver data to enter the receiver register on the rising edge of the clock.

Am2927 FUNCTION TABLES

Driver Register Control

ENDR	s	RLE	Driver Register
Н	Х	Х	Hold Previous Data
L	L	х	Load from D Input
L	Н	L	Load from BUS
L	Н	Н	Load Latched Receiver Data

Receiver Latch Control

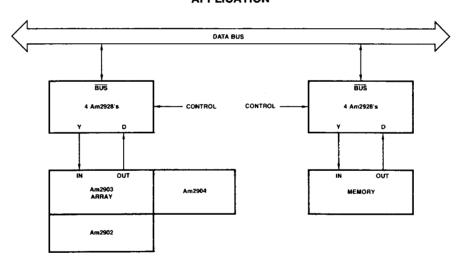
ENDR	S	RLE	Receiver Output
Х	х	Н	Data Latched
Н	Н	L	Driver Register Output at Y output (Latch Transparent)
Х	L	L	Bus Data at Y Output
L	x	L	(Latch Transparent)

Am2928 FUNCTION TABLES

Driver Register Control

ENDR	s	Driver Register
н	×	Hold Previous Data
L	L	Load from D input
L	Н	Load from Receiver Register

Receiver Register Control


ENDR	S	ENREC	Receiver Output
х	Х	Н	Hold Previous Data
Н	Н	L	Load from Driver Register
Х	L	L	Load from BUS
L	X L		Load Ironi Bos

Am2927 AND Am2928 FUNCTION TABLE

Police India	Bassing Insut	Con	trol Input Con	dition		
Driver Input From	Receiver Input From	S	ENDR	*	Signal Flow	BE
D	BUS	L	L	L	BUS -D -A-	н
Input	(No Load)	L	L	н	-D-A-	L
	BUS	н	L	L	-DL-RJ-	н
Receiver	(No Load)	H	L	Н		٤
	BUS	L	н	L		н
(No Load)	Driver	н	н	L	D ¹ -R-	х
	(No Load)	×	Н	н	D A	L

*RLE for Am2917 (asynchronous) or ENREC for Am2928 (_____).

APPLICATION

AF001800

The Am2927 and Am2928 can be used to provide Data Bus, Address Bus and Control Bus Interface in a high-speed bipolar microprocessor system.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Supply Voltage to Ground Potential Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +VCC max
DC Output Current, Into Bus100mA
DC Output Current, Into Outputs
(Except Bus) 30mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Temperature	0°C to +70°C
Supply Voltage	+ 4.75V to +5.25V
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to + 5.5V
Operating ranges define those limits ality of the device is guaranteed.	over which the function-

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	rs Description Test Conditions (Note 1)					Max	Units
		V _{CC} = MIN	MIL, I _{OH} = -2.0mA	2.4	3.4		
V _{OH}	Receiver Output HIGH Voltage	$V_{IN} = V_{IH}$ or V_{IL}	COM'L, I _{OH} = -6.5mA	2.4	3.4		Volts
		V _{CC} = 5.0V	I _{OH} = -100μA	3.0			
V _{OL}	Output LOW Voltage	V _{CC} = MIN V _{IN} = V _{IL} or V _{IH}	I _{OL} = 24mA			0.5	Volts
V _{IH}	Input HIGH Level	Guaranteed input HIGH voltage for		2.0			Volts
		Guaranteed input	logical MIL	Ĩ		0.8	Volts
VIL	Input LOW Level	LOW voltage for all imputs COM'L				0.8	70.10
	Input Clamp Voltage	VCC + MIN. IN +	18mA			-1.2	Volts
		V _{CC} = MAX,	S, ENDR			-2.8	mA
I _{IL}	Input LOW Current	V _{IN.} ⇒ 9.4V	All other inputs	<u> </u>		-1.4	
		V _{CC} = MAX,	S, ENDR			100	μΑ
lΗ	Input HIGH Ourrent	$V_{IN} = 2.7V$	All other inputs	<u></u>		50	
i _l	Input HIGH Current	V _{CC} = MAX, V _{IN} =	= 5.5V			1.0	mA
lozh	Off-State Output Current	V MAY	V _O = 2.4V			100	μΑ
lozL	(Receiver Output)	V _{CC} = MAX	V _O = 0.5V			-50	,,,,
ISC	Output Short Circuit Current	V _{CC} = MAX	Receiver	-40		-100	mA
'30		1	Am2927		150	185	mA
lcc	Power Supply Current	V _{CC} = MAX	Am2928		153	190] ''' '

1. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.

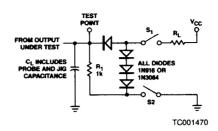
2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. This parameter is typical of device characterization data and is not tested in production. Notes:

Parameters	Description	Test Conditi	ions (Note 1)	Min.	Typ Max	Unit
V _{OL}	Bus Output LOW Voltage	V _{CC} = MIN	Io 24ma		0.4	Volts
Vон	Bus Output HIGH Voltage	Vcce-MIN	COL L, ION > -20mA OIL, IOH = -15mA	2.4		Volt
VIH	Receiver Input HIGH Threateld	Bus Emple 2.4	***	2.0		Volt
VIL	Receiver Input OW Thresheld	Bus Entable = 2.4V			0.8	Volt
OFF	Bus Lealune Cument (Fewer Off)	Vec = 0V, Vo = 4.5V			100	μΑ
lozu	Bus Leakane Current	V _{CC} = MAX	V _O = 0.4V		-1.4	m/
lozh	(Highelinpediance)	BÚS Enable = 2.4V	V _O = 2.5V		100	μA
Isc	this Output Short Circuit Current	V _{CC} = MAX, V _O = 0V		-50	-255	m/
Cs	Bus Capacitance (Note 4)	V _{CC} = 0V			8	pF

Notes:


1. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. This parameter is typical of device characterization data and is not tested in production.

SWITCHING TEST CIRCUIT

Note: For standard totem-pole outputs, remove R1; S1 and S2 closed.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified Am2927

		-	CO	MMERC	IAL	M	ILITAR	Y	
				Am2927	,		Am2927	,	
Parameters	Description	Test Conditions (Note 2)	Min	Тур	Max	Min	Тур	Max Units	
t _{PLH}	Date of Class CD 40 DUC			18	26		18	23	ns
tPHL	Driver Clock, CP, to BUS	C_L (BUS) = 50pF R_I (BUS) = 130 Ω		18	26		18	23	
tzH • tzL	Bus Enable, BE, to BUS			14	26	4	. 14	23	ns
tHZ • tLZ	Bus Enable, BE, to BUS	$R_L = 130\Omega$, $C_L = 5pF$		12	18/30		12	16/23	ris
tpw	Min Clock Pulse Width (HIGH or LOW)		18	46)		116	0		ns
tpLH	BUS to Receiver Output (Latch Enabled)	C _L = 500 F R _L = 2700	10		23		16	20	ns
tphL	BOS to Receiver Output (Later Enabled)			A G	29	29 16	20		
[†] PLH	Latch Enable, RLE, to Receiver Output				26		18	23	ns
tPHL					26	18 23	23		
tzH • tzL	Output Enable, OE, to Receiver Output		<u> </u>		23			21	ns
tHZ • tLZ	Output Eriable, OE, to neceiver coupar.	$C_L = 50F$, $R_L = 270\Omega$			21		14	18	
ts	Driver Enable, ENDR, to Clock		10			9			ns
t _h	Driver Erizote, Even, to Cicca		3			3			
ts	Select & to Clock (RLE = HIGH)		18			15			ns
t _h	- Select & to Clock (NEE - HIGH)		3			2			
tpLH	Select S, to Receiver Output	C _L = 50pF			26			23	ns
^t PHL	Select 5, to neceiver output	$R_L \approx 270\Omega$			35			30	113
ts	Data Januta D. to Clock		9			7		<u> </u>	ns
th	- Data Inputs D, to Clock		5			4	ļ	ļ	ļ <u>.</u>
ts	BUS to Latch Enable, RLE		11	<u> </u>		10		<u> </u>	ns
th	BUS to Later Enable, RLE		4			3	L		

Notes:

Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.
 For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.
 Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified Am2928

Parameters	Description	Test Conditions (Note 2)	COMMERCIAL Am2928			MILITARY			
							Am2928	3	
			Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	Units
t _{PLH}	Driver Clock, CP, to BUS	C _L (BUS) = 50pF		18	23		d. H	26	ns
t _{PHL}		$R_L(BUS) = 130\Omega$		18	23			26	
tzH • tzL	Bus Enable, BE, to BUS			14	23	pyllill.	À. Y	26	ns
tHZ • tLZ		$R_L = 130\Omega$, $C_L = 5pF$		112	16/23	A	ages.	18/30	
t _{PLH}	Clock, CP, to Receiver Output	100 mg		18	23			26	ns ns
t _{PHL}		C _L = 50 pF		18	23	<u> </u>		26	
tpw	Min Clock Pulse Width (HIGH or LOW)	RL = 27001	5			18		_	ns
tzh • tzl				14	21			23	ns
thz • tLz		$C_L = 5pF_i$ $R_L = 270\Omega$		21	18			26	
ts	Driver Enable, ENDR, to Clock		9			10		ns ns	ns
th			3			3			_
ts	BUS to Olbok (Receiver Register)	1	7			8			ns
th			4			5			
ts	Receiver Enable, ENMREC, to Clock		8			10			ns
th			4	<u> </u>		5			
ts	S to Clock]	10			12			ns
th			4			5			
ts	Data Inputs, D, to Clock (Driver Register)]	7			9			ns
th			4			5	_		

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.
2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.