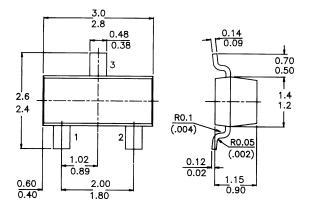


SOT-23 Formed SMD Package

BSR20 BSR20A

SILICON P-N-P HIGH-VOLTAGE TRANSISTORS


P-N-P high-voltage small-signal transistors

Marking

BSR20 = T35

BSR20A = T36

PACKAGE OUTLINE DETAILS
ALL DIMENSIONS IN mm

Pin configuration

1 = BASE

2 = EMITTER

3 = COLLECTOR

ABSOLUTE MAXIMUM RATINGS

			BSR20	BSR20A	1
Collector-base boltage (open emitter)	$-V_{CB0}$	max.	130	160	V
Collector-emitter voltage (open base)	$-V_{CE0}$	max.	120	150	V
Collector current	$-I_C$	max.	600	600	mΑ
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	250	250	mW
Junction temperature	T_{j}	max.	<i>150</i>	150	$^{\circ}$ C
Collector-emitter saturation voltage	3				
$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$	V_{CEsat}	max.	0,5	0,5	V
D.C. current gain					
$I_C = 10 \text{ mA}; V_{CE} = -5 \text{ V}$	h_{FE}	min.	40	60	
		max.	180	240	

RATINGS (at $T_A = 25^{\circ}C$ unless otherwise specified) Limiting values

			BSR20	BSR20	<i>9A</i>
Collector-base voltage (open emitter)	$-V_{CBO}$	max.	130	160	\overline{V}
Collector-emitter voltage (open base)	$-V_{CEO}$	max.	120	150	V
Emitter-base voltage (open collector)	$-V_{EBO}$	max.		5	V
Collector current	$-I_C$	max.	ϵ	300	mA
Total power dissipation					
$up to T_{amb} = 25 ^{\circ}C$	P_{tot}	max.	2	250	mW
Junction temperature	T_j	max.	1	50	$^{\circ}$ C
Storage temperature	T_{stg}		-55 t	o +150	° C
THERMAL RESISTANCE					
From junction to ambient	$R_{th\ j-a}$	=	5	500	K/W

CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified

1 amb - 23 C uniess otherwise specified				
			BSR20	BSR20A
Collector cut-off current				
$I_E = 0$; $-V_{CB} = 100 V$	$-I_{CB0}$	max.	100	nA
$I_E = 0; -V_{CB} = 120 V$	$-I_{CB0}$	max.		50 nA
$I_E = 0$; $-V_{CB} = 100 \text{ V}$; $T_{amb} = 100 ^{\circ}C$	$-I_{CB0}$	max.	100	$\mathfrak{m}A$
$I_E = 0$; $-V_{CB} = 120 \text{ V}$; $T_{amb} = 100 ^{\circ}C$	$-I_{CB0}$	max.		<i>50</i> m <i>A</i>
Emitter cut-off current				
$I_C = 0$; $-V_{EB} = 4.0 V$	$-I_{EB0}$	max.	50	50 nA
Brealkdown voltages				
$I_C = 1.0 \text{ mA}; I_B = 0$	-V _(BR) CE0	min.	120	150 V
$I_C = 100 \text{ mA}; I_E = 0$	$-V_{(BR)CB0}$	min.	130	160 V
$I_C = 0$; $I_E = 10$ m A	$-V_{(BR)EB0}$	min.	5,0	5,0 V
Saturation voltages	, ,			
$-I_C = 10 \text{ mA}; -I_B = 1.0 \text{ mA}$	-V _{CEsat}	max.	0,2	0,2 V
	-V _{BEsat}	max.	1,0	1,0 V
$-I_C = 50 \text{ mA}; -l_B = 5.0 \text{ mA}$	-V _{CEsat}	max.	0,5	0,5 V
	-V _{BEsat}	max.	1,0	1,0 V
D.C. current gain				
$I_C = 1.0 \text{ mA}; -V_{CE} = 5 \text{ V}$	h_{FE}	min.	<i>30</i>	50
La = 10 mA; Van = 5 V	h	min.	40	60
$I_C = 10 \text{ mA; } -V_{CE} = 5 \text{ V}$	h_{FE}			
I 70 A I/ 7 I/	1	max.		240
$I_C = 50 \text{ mA; } -V_{CE} = 5 \text{ V}$	h_{FE}	min.	40	50
Output capacitance at $f = 1$ MHz				
$I_E = 0$; $-V_{CB} = 10V$	Co	max.	6	6 pF

		BSR20	BSR20A
Transition frequency at $f = 100 \text{ MHz}$	f_T	min. 100	100 MHz
$-I_C = 10 \text{ mA; } -V_{CE} = 10 \text{ V}$		max. 400	300 MHz
Noise figure at $R_S = 1 \text{ kW}$			
$I_C = 250 \text{mA}; -V_{CE} = 5 V;$			
f = 10 Hz to 15.7 kHz	F	max. 8	8 dB
Small Signal Current Gain	h_{fe}	min. 30	40
$-V_{CE} = 10V$; $-I_{C} = 1$ mA; $f = 1$ KHz		max. 200	200

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-579 6150 Fax + 91-11-579 9569, 579 5290
e-mail sales@cdil.com www.cdil.com