

FQPF11N40 **400V N-Channel MOSFET**

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, electronic lamp ballast based on half bridge.

Features

- + 6.6A, 400V, ${\sf R}_{{\sf DS}({\sf on})}$ = 0.48 Ω @V_{GS} = 10 V + Low gate charge (typical 27 nC)
- Low Crss (typical 20 pF)
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	FQPF11N40	Units	
V _{DSS}	Drain-Source Voltage		400	V
I _D	Drain Current - Continuous (T _C = 25°C)		6.6	A
	- Continuous (T _C = 100°C)		4.2	А
I _{DM}	Drain Current - Pulsed	(Note 1)	26	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	520	mJ
I _{AR}	Avalanche Current	(Note 1)	6.6	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation (T _C = 25°C)	50	W	
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C	
TL	Maximum lead temperature for soldering put 1/8" from case for 5 seconds	300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

©2000 Fairchild Semiconductor International

April 2000

ТМ

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	400			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		0.42		V/°C
I _{DSS}		V _{DS} = 400 V, V _{GS} = 0 V			1	μA
	Zero Gate voltage Drain Current	V _{DS} = 320 V, T _C = 125°C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 3.3 A		0.38	0.48	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 3.3 A (Note 4)		5.3		S
Dynam C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		1100	1400	pF
Coss	Output Capacitance	f = 1.0 MHz		180	240	pi pF
Crss	Reverse Transfer Capacitance			20	30	pF
Switchi	ng Characteristics				70	
^t d(on)	Turn-On Delay Time	V _{DD} = 200 V, I _D = 11.4 A,		30	70	ns
Կ +	Turn-On Rise Time	R _G = 25 Ω		100	210	ns
^L d(off)	Turn-Off Eall Time	(Note 4, 5)		60	130	ns
<u>ч</u> О	Total Cate Charge			27	35	nC
	Gate-Source Charge	$V_{DS} = 320$ V, $I_D = 11.4$ A,		73		nC
	Gate-Drain Charge	(Note 4, 5)		12.3		nC
∽gu				12.0		110
Drain-S	ource Diode Characteristics a	nd Maximum Ratings				
I _S	Maximum Continuous Drain-Source Did	ode Forward Current			6.6	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F	Forward Current			26	Α
Van	Drain-Source Diode Forward Voltage			15	V	

 V_{GS} = 0 V, I_{S} = 11.4 A,

 dI_F / dt = 100 A/µs

(Note 4)

240

1.8

ns

μC

 Q_{rr}

t_{rr}

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 21mH, I_{AS} = 6.6A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 11.4A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Reverse Recovery Time

Reverse Recovery Charge

FQPF11N40

FQPF11N40

©2000 Fairchild Semiconductor International

Rev. A, April 2000

FQPF11N40

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E^2 CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

BUY

Datasheet

datasheet

PDF

<u></u> =- '

This page

Print version

Download this

e-mail this datasheet

Home >> Find products >>

FQPF11N40 400V N-Channel QFET

Contents

•<u>General description</u> •<u>Features</u> •<u>Product status/pricing/packaging</u> •<u>Order Samples</u>

General description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, electronic lamp ballast based on half bridge.

Qualification Support

back to top

Features

- 6.6A, 400V, R_{DS(on)} = 0.48Ω @V_{GS} = 10 V
- Low gate charge (typical 27 nC)
- Low Crss (typical 20 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Related Links

Request samples

How to order products

.

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product
Product status
Pb-free Status
Pricing*
Package type
Leads
Packing method
Package Marking Convention**

Image: Convention and the status
Image: Conventinge: Convention and the

FQPF11N40T	Full Production	Full Production	\$1.50	<u>TO-220F</u>	3	RAIL	& Z (Asm. Plant Code) &E& 3 (3-Digit Date Code) <u>Line 2:</u> FQPF <u>Line 3:</u> 11N40T
------------	-----------------	--------------------	--------	----------------	---	------	---

* Fairchild 1,000 piece Budgetary Pricing ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Ø Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FQPF11N40 is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product FQPF11N40T

back to top

	©	2007	Fairchild	Semiconducto
--	---	------	-----------	--------------

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (