

MICROCIRCUIT DATA SHEET

MRLM118-X-RH REV 1A0

Original Creation Date: 04/19/00 Last Update Date: 06/05/00 Last Major Revision Date: 05/30/00

SINGLE OPERATIONAL AMPLIFIER, HIGH SPEED: ALSO AVAILABLE GUARANTEED TO 30K RAD(Si) TESTED TO MIL-STD-883, METHOD 1019.5

General Description

The LM118 is a precision high speed operational amplifier designed for applications requiring wide bandwidth and high slew rate. It features a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

The LM118 has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over 150V/us and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 us.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. This device is easy to apply and offers an order of magnitude better AC performance than industry standards such as the LM709.

Industry Part Number

NS Part Numbers

LM118HPQML LM118HPQMLV LM118J-8PQML LM118J-8PQMLV

LM118WGPQML LM118WGPOMLV

LM118

Prime Die

LM118

Controlling Document

SEE FEATURES SECTION

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp ($^{\circ}$ C)
1 2 3 4 5 6 7 8A 8B 9 10 11	Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 -55 +25 +125 -55 +25 +125 -55 +125 -55

Features

- 15 MHz small signal bandwidth
- Guaranteed 50V/uS slew rate
- Maximum bias current of 250nA
- Operates from supplies of $\pm 5V$ to $\pm 20V$
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps
- CONTROLLING DOCUMENTS:

LM118HPQML	5962P9853901QGA
LM118HPQMLV	5962P9853901VGA
LM118J-8PQML	5962P9853901QPA
LM118J-8PQMLV	5962P9853901VPA
LM118WGPQML	5962P9853901QZA
LM118WGPQMLV	5962P9853901VZA

(Absolute Maximum Ratings)

(Note 1)

Supply Voltage		<u>+</u> 20V
Power Dissipation (Note 2) METAL CAN J-8 Pkg CERAMIC SOIC		750mW 1000mW 600mW
Differential Input Cu (Note 3)	arrent	<u>+</u> 10mA
Input Voltage (Note 4)		+15V
Output Short-Circuit	Duration	Continuous
Operating Temperature	e Range	-55 C ≤ Ta ≤ +125 C
Thermal Resistance ThetaJA Metal Can Pkg J-8 Pkg CERAMIC SOIC	(Still Air @ 0.5W) (500LF/Min Air flow @ 0.5W) (Still Air @ 0.5W) (500LF/Min Air flow @ 0.5W) (Still Air @ 0.5W) (500LF/Min Air flow @ 0.5W)	160 C/W 86 C/W 120 C/W 66 C/W 198 C/W 124 C/W
ThetaJC Metal Can Pkg J-8 Pkg CERAMIC SOIC		48 C/W 17 C/W 22 C/W
Storage Temperature F	lange	-65 C <u><</u> Ta <u><</u> +150 C
Lead Temperature (Soldering, 10 se	conds)	300 C
Package Weight (Typical) METAL CAN J-8 Pkg CERAMIC SOIC		985mg 1090mg 225mg
ESD Tolerance (Note 5)		2000V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occcur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
 Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
 Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection.
- Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.
- IV is applied between the inputs unless some limiting resistance is used. Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
- Note 5: Human body model, 1.5K ohms in series with 100 pF.

Electrical Characteristics

DC PARAMETERS: (SEE NOTE 6)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc$ = $\pm 20V$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	+Vcc = 35V, -Vcc = -5V, Vcm = -15V			-4	4	mV	1
					-6	6	mV	2, 3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V			-4	4	mV	1
					-6	6	mV	2, 3
		Vcm = 0V			-4	4	mV	1
					-6	6	mV	2, 3
		+Vcc = 5V, $-Vcc = -5V$, $Vcm = 0V$			-4	4	mV	1
					-6	6	mV	2, 3
Iio	Input Offset Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V, Rs = 100K Ohms	5		-40	40	nA	1
	Current	KS - TOOK OHIUS	5		-80	80	nA	2, 3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V, Rs = 100K Ohms	5		-40	40	nA	1
			5		-80	80	nA	2, 3
	+Vcc = 5V, -Vcc = -5V,	Vcm = 0V, Rs = 100K Ohms	5		-40	40	nA	1
			5		-80	80	nA	2, 3
		+Vcc = 5V, -Vcc = -5V, Vcm = 0V, Rs = 100K Ohms	5		-40	40	nA	1
		RS - TOOR OTHIS	5		-80	80	nA	2, 3
Iib+	Input Bias Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V, Rs = 100K Ohms	5		1	250	nA	1, 2
	Current	KS - TOOK OHIUS	5		1	400	nA	3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V, Rs = 100K Ohms	5		1	250	nA	1, 2
		RS = 100K OIMIS	5		1	400	nA	3
		Vcm = 0V, Rs = 100K Ohms	5		1	250	nA	1, 2
			5		1	400	nA	3
		+Vcc = 5V, -Vcc = -5V, Vcm = 0V, Rs = 100K Ohms	5		1	250	nA	1, 2
			5		1	400	nA	3

_

Electrical Characteristics

DC PARAMETERS: (SEE NOTE 6) (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc$ = $\pm 20V$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Iib-	Input Bias Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V, Rs = 100K Ohms	5		1	250	nA	1, 2
	Current		5		1	400	nA	3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V, Rs = 100K Ohms	5		1	250	nA	1, 2
			5		1	400	nA	3
		Vcm = 0V, Rs = 100K Ohms	5		1	250	nA	1, 2
			5		1	400	nA	3
		+Vcc = 5V, -Vcc = -5V, Vcm = 0V, Rs = 100K Ohms	5		1	250	nA	1, 2
			5		1	400	nA	3
PSRR+	Power Supply Rejection Ratio	+Vcc = 10V, -Vcc = -20V			-100	100	uV/V	1
					-150	150	uV/V	2, 3
PSRR-	Power Supply Rejection Ratio	+Vcc = 20V, -Vcc = -10V			-100	100	uV/V	1
					-150	150	uV/V	2, 3
CMRR	Common Mode Rejection Ratio	$Vcm = \pm 15V$, $Vcc = \pm 35V$ to $\pm 5V$			80		dB	1, 2, 3
Vio(adj)+	Offset Null				7		mV	1, 2, 3
Vio(adj)-	Offset Null					-7	mV	1, 2, 3
Delta Wis (Delta	Temperature	25 C ≤ TA ≤ 125 C	2		-50	50	uV/ C	2
Vio/Delta T	Coefficient of Input Offset Voltage	-55 C ≤ TA ≤ 25 C	2		-50	50	uV/ (2 3
Delta Iio/Delta	Temperature Coefficient of	25 C ≤ TA ≤ 125 C	2		-1000	1000	pA/ C	2
T	Input Offset Current	-55 C ≤ TA ≤ 25 C	2		-1000	1000	pA/ (2 3
Ios+	Short Circuit Current	+Vcc = 15V, -Vcc = -15V, t \leq 25mS, Vcm = -15V			-65		mA	1, 2, 3
Ios-	Short Circuit Current	+Vcc = 15V, -Vcc = -15V, t ≤ 25mS, Vcm = 15V				65	mA	1, 2
	Current					80	mA	3
Icc	Power Supply Current	+Vcc = 15V, -Vcc = -15V				8	mA	1
	Callent					7	mA	2
						9	mA	3

Electrical Characteristics

DC PARAMETERS: (SEE NOTE 6) (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc$ = $\pm 20V$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vopp+	Output Voltage Swing	Rl = 10K Ohms, Vcm = -20V			17		V	4, 5, 6
		Rl = 2K Ohms, Vcm = -20V			16		V	4, 5, 6
Vopp-	Output Voltage Swing	Rl = 10K Ohms, Vcm = 20V				-17	V	4, 5, 6
		Rl = 2K Ohms, Vcm = 20V				-16	V	4, 5, 6
Avs+	Open Loop Voltage Gain	Vout = 15V, Rl = 2K Ohms	1		50		V/mV	4
			1		32		V/mV	5, б
		Vout = 15V, Rl = 10K Ohms	1		50		V/mV	4
			1		32		V/mV	5,6
Avs-	Open Loop Voltage Gain	Vout = -15V, Rl = 2K Ohms	1		50		V/mV	4
	Gain		1		32		V/mV	5,6
		Vout = -15V, Rl = 10K Ohms	1		50		V/mV	4
			1		32		V/mV	5,6
Avs	Open Loop Voltage Gain	\pm Vcc = \pm 5V, Vout = \pm 2V, Rl = 2K Ohms	1		10		V/mV	4, 5, 6
		\pm Vcc = \pm 5V, Vout = \pm 2V, Rl = 10K Ohms	1		10		V/mV	4, 5, 6

Electrical Characteristics

AC PARAMETERS: (SEE NOTE 6)

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: $\pm Vcc = \pm 20V$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
NI(BB)	Noise Input Broadband	BW = 10Hz to $5KHz$, $Rs = 0$ $Ohms$				25	uVrms	\$ 7
NI(PC)	Noise Input Popcorn	BW = 10Hz to 5KHz, Rs = 20K Ohms				80	Uvpk	7
TR(tr)	Transient Response: Rise Time	Vin = 50mV, PRR = 1KHz				40	nS	7, 8A, 8B
TR(os)	Transient Response: Overshoot	Vin = 50mV, PRR = 1KHz				50	8	7, 8A, 8B
Sr+	Slew Rate	Av = 1, $Vin = -5V$ to $+5V$			50		V/uS	7, 8B
					40		V/uS	8A
Sr-	Slew Rate	Av = 1, $Vin = +5V$ to $-5V$			50		V/uS	7, 8B
					40		V/uS	8A
ts+	Settling Time	Vin = -5V to +5V	3, 4			800	nS	9
			3, 4			1200	nS	10, 11
ts-	Settling Time	Vin = +5V to -5V	3, 4			800	nS	9
			3,4			1200	nS	10, 11

DC PARAMETERS: DRIFT VALUES

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc = \pm 20V$. "Delta calculations performed on JAN S and QMLV devices at group B, subgroup 5 only".

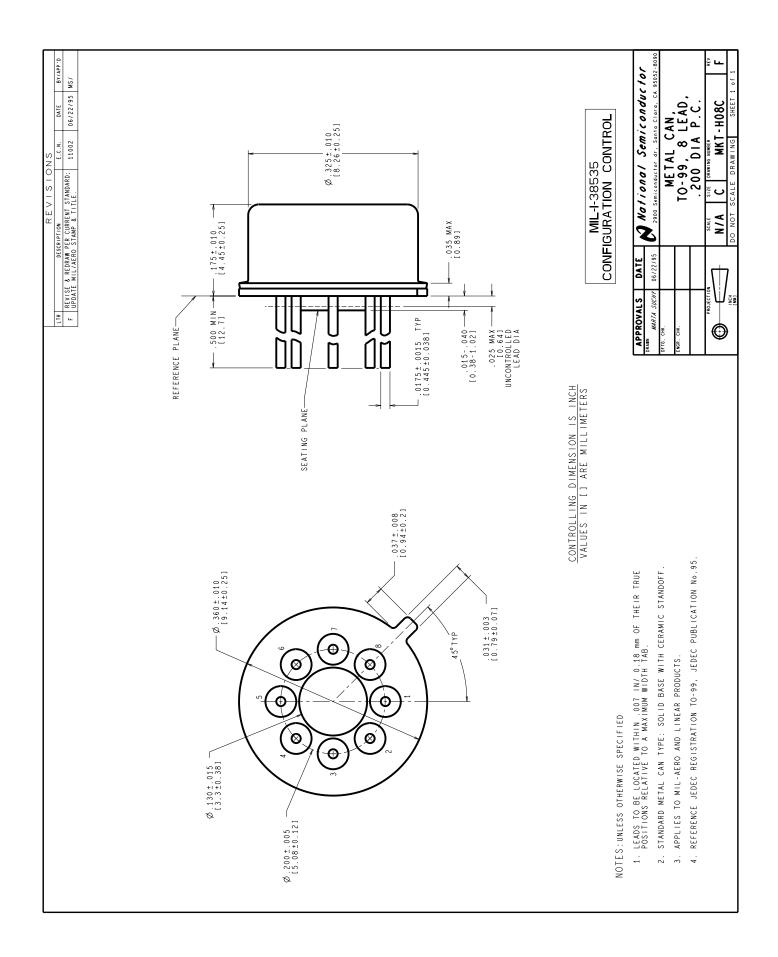
Vio	Input Offset Voltage	Vcm = 0V		-1	1	mV	1
lib+	Input Bias Current	Vcm = 0V, Rs = 100K Ohms		-25	25	nA	1
Iib-	Input Bias Current	Vcm = 0V, Rs = 100K Ohms		-25	25	nA	1

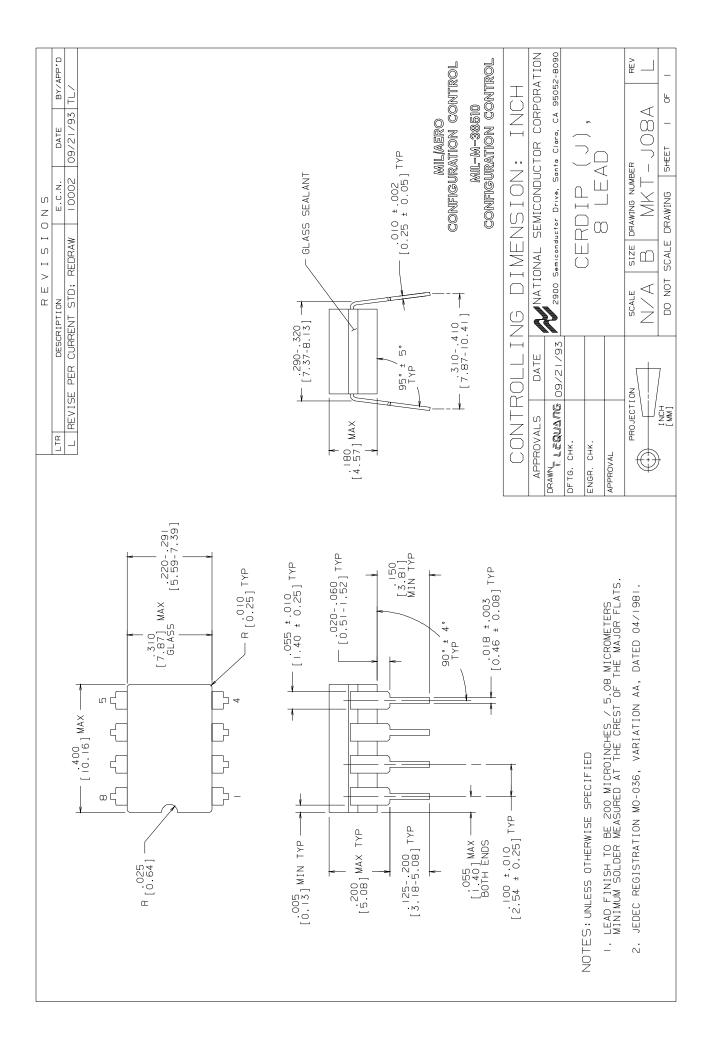
Note 1: Datalog in K = V/mV.

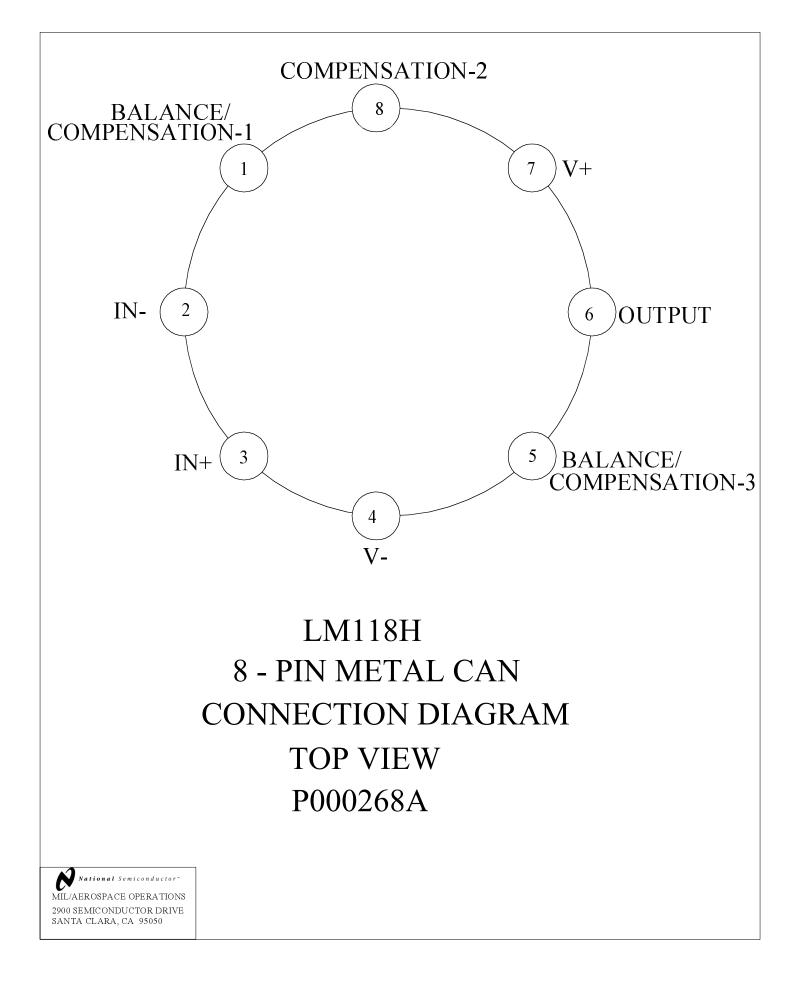
Note 3: Errorband = $\pm 2\%$.

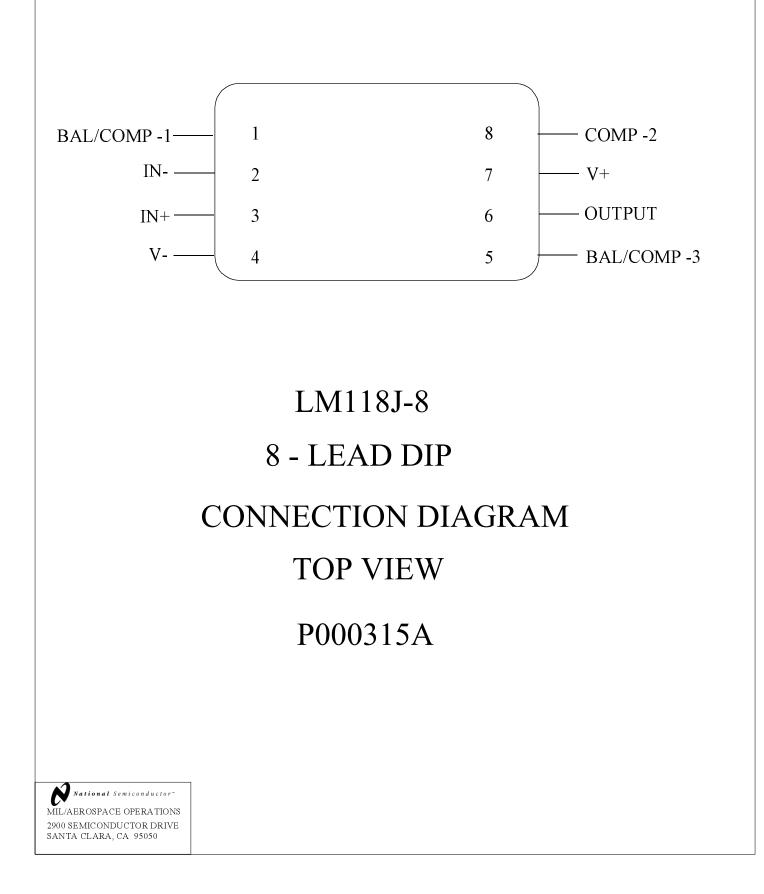
Test on Bench, refer to SP-16655. Note 4:

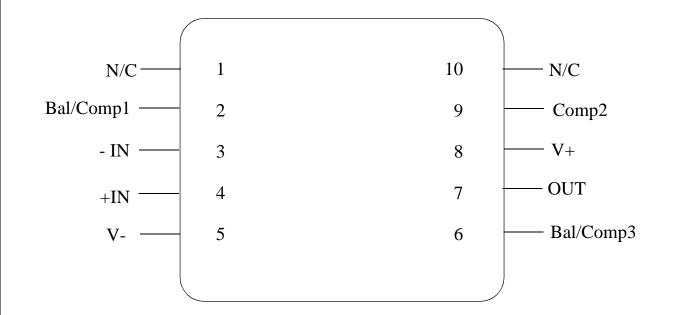
Note 5:

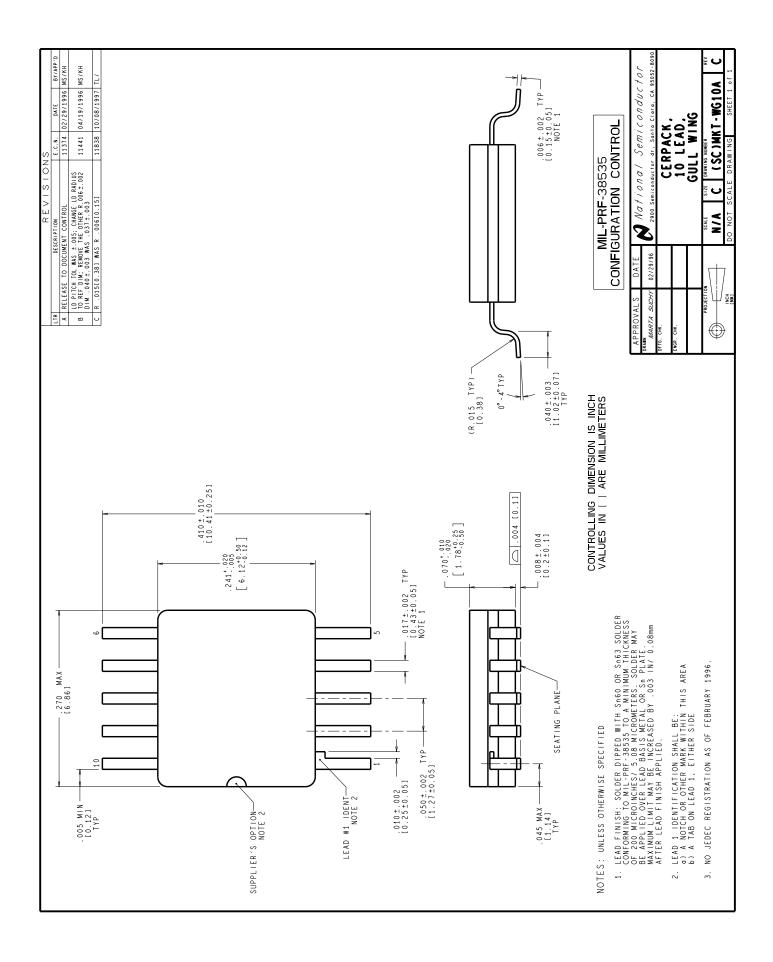

S/S Rs = 20K Ohms, tested with Rs = 100K Ohms for better resolution. Pre and post irradiation limits are identical to those listed under AC and DC Note 6: electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiaton end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, Method 1019.5, Condition A.


Note 2: Calculated parameter.


GRAPHICS#	DESCRIPTION
05482HRA1	10LD CERPACK, 10LD CERAMIC SOIC (B/I CKT)
09556HR02	CERDIP (J14), CERDIP (J8) (B/I CKT)
09557HRA4	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (B/I CKT)
H08CRF	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (P/P DWG)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000268A	METAL CAN (H), 8 LEAD (PINOUT)
P000315A	CERDIP (J), 8 LEAD (PINOUT)
P000459A	CERAMIC SOIC (WG), 10 LEAD (PINOUT)
WG10ARC	CERAMIC SOIC (WG), 10 LEAD (P/P DWG)


Graphics and Diagrams


See attached graphics following this page.



LM118WG 10 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000459A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003680	06/05/00	Rose Malone	Initial MDS Release: MRLM118-X-RH, Rev. 0A0
1A0	M0003718	06/05/00		Update MDS: MRLM118-X-RH, Rev. 0A0 to MRLM118-X-RH, Rev. 1A0. Removed subgroups 12, 13 and 14 from Mai Table. Changed Subgroups on ts+ and ts- parameters from 12, 13, 14 to 9, 10, 11. Changed to meet DSCC requirements.