

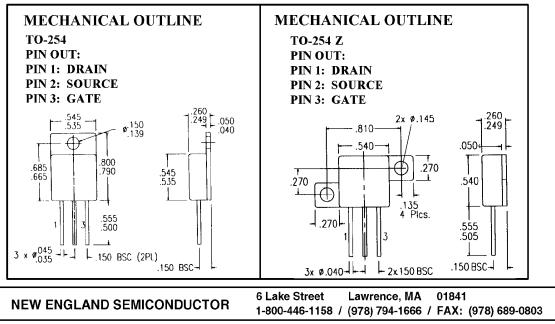
28 AMPERE

100 VOLTS

0.077 Ω

POWER MOSFET N CHANNEL

- REPETITIVE AVALANCHE RATINGS
- LOW R_{DS(ON)}
- LOW DRIVE REQUIREMENT
- DYNAMIC dv/dt RATING


ABSOLUTE MAXIMUM RATINGS ($T_c = 25^{\circ}C$ unless otherwise noted)

PARAMETERS / TEST CONDITIONS		SYMBOL	VALUE		UNITS	
Drain-Source Voltage		V _{DS}	100		V	
Gate-Source Voltage		V _{GS}	±20		V	
Continuous Drain Current	$T_{\rm C} = 25^{\circ}{\rm C}$	ID	28		А	
Pulsed Drain Current (1)	sed Drain Current (1)		112		A	
Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}$	P _D	125		W	
Operating Junction & Storage Temperature Range		$T_{J_i} T_{stg}$	-55 to + 175		°C	
Lead Temperature (1/16" from case for 10 secs.)		TL	300		°C	
THERMAL RESISTANCE	E RATINGS					
THERMAL RESISTANCE		SYMBOL	TYP.	MAX.	UNITS	
Junction-to-Case		R _{thJC}	1	1.2	K/W	
Junction-to-Ambient		R _{thJA}		48	K/W	
Case-to-Sink		R _{thCS}	0.21	1	K/W	

TO-254

TO-254Z

(1)Pulse width linited by maximum junction temperature.

T4-4.8-860-927 REV: --

PARAMETERS / TEST CONDITIONS		SYMBOL	MIN.	TYP.	MAX.	UNITS
Drain-Source Breakdown Voltage						
$V_{GS} = 0 V, I_D = 250 \mu A$		V _{(BR)DSS}	100			V
Gate Threshold Voltage						
$V_{DS} = V_{GS} I_D = 250 \mu A$		V _{GS(th)}	2.0		4.0	V
Gate-Body Leakage					. 100	
$V_{GS} = At Rated V_{GS}$		I _{GSS}			±100	nA
Zero Gate Voltage Drain Current					250	
$V_{DS} = 0.8 \text{ max Rating}$ $V_{GS} = 0 \text{ V}$		I _{DSS}			250	μΑ
Zero Gate Voltage Drain Current	T 125 ⁰ 0				1000	
$V_{DS} = 80\% V_{(BR)DSS} V_{GS} = 0 V$	$I_{1} = 125 C$	I _{DSS}			1000	μΑ
Drain-Source On-State Resistance (2) N = -10 N = -28 A		г			0.077	Ω
$V_{GS} = 10 \text{ V}, \ I_D = 28 \text{ A}$		DS(on)		 	0.077	
Forward Transconductance (2) $V_{1} = -15 V_{1} = -28 A_{1} (V_{1})$	A V D max)	g	8.7			S(Ω)
$V_{DS} = 15 V, I_D = 28 A (V_{DS})$		g fs	0.7			3(32)
Input Capacitance	$V_{GS} = 0 V$	C _{iss}		1500		
Output Consoltonoo	$V_{DS} = 25 V$			500		pF
Output Capacitance	$\mathbf{v}_{\mathrm{DS}} = 25 \mathbf{v}$	Coss		500		pr
Reverse Transfer Capacitance	f = 1.0 MHz			90		
		C _{rss}				
Total Gate Charge	$V_{DS} = 80 \% V_{(BR)DSS}$	Qg			60	
Ç	$V_{GS} = 10 \text{ V}, I_{D} = 28 \text{ A}$	~ 8				
Gate-Source Charge	(Gate charge is essentially	Q _{gs}			12	nC
	independent of operating	-65				
Gate -Drain Charge	temperature.)	Q _{gd}			28	
		5				ļ
Turn-On Delay Time	$V_{dd} = 50\% V,$	t.c.s				
Rise Time	$I_{\rm D} = 28 \text{A},$	^t d(on)			23	ns
KISC THINC	$R_G = 9.1 \Omega$	t r			110	115
Turn-Off Delay Time	(Switching time is	L1(. 00				
run on Dony rine	essentially independent of	^t d(off)			60	
Fall Time	operating temperature.)	^t f		1	75	

SOURCE-DRAIN DIODE RATINGS & CHARACTERISTICS ($T_i = 25^{\circ}C$ unless otherwise noted)

PARAMETERS / TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX	UNITS
Continuous Current	I _S			28	A
Pulsed Current (1)	I _{SM}			112	Α
Forward Voltage (2) $I_F = I_S, V_{GS} = 0 V$	V _{SD}			2.5	v
Reverse Recovery Time $I_F = I_S$, $dI/dt = 100 \text{ A}/\mu S$, $V_{DD} = 50 \text{ v}$	t rr			300	ns
Reverse Recovered Charge $I_F = I_S$, $dI/dt = 100 \text{ A}/\mu S$, $V_{DD} = 50 \text{ v}$	Q _{rr}			2.9	μC

(1)Pulsed width limited by maximum junction temperature. (2)Pulse Test: Pulse width $< 300 \ \mu sec.$ Duty cycel $\le 2\%$.

NEW ENGLAND SEMICONDUCTOR	6 Lake Street	Lawrence, MA	01841
	1-800-446-1158	/ (978) 794-1666	/ FAX: (978) 689-0803

T4-4.8-860-927 REV: --