

UC2825A-EP SGLS305 - JULY 2005

HIGH-SPEED PWM CONTROLLER

FEATURES

- Controlled Baseline
 - -One Assembly/Test Site
 - -One Fabrication Site
- Extended Temperature Performance of -40°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree⁽¹⁾
- Improved Version of the UC2825 PWM
- Compatible with Voltage-Mode or Current-Mode Control Methods
- Practical Operation at Switching Frequencies to 1 MHz
- 50-ns Propagation Delay to Output
- High-Current Dual Totem Pole Outputs (2-A Peak)
- Trimmed Oscillator Discharge Current
- Low 100-µA Startup Current
- Pulse-by-Pulse Current Limiting Comparator
- Latched Overcurrent Comparator With Full
 Cycle Restart

DESCRIPTION

The UC2825AQ PWM controller is a improved version of the standard UC2825. Performance enhancements have been made to several of the circuit blocks. Error amplifier gain bandwidth product is 12 MHz, while input offset voltage is 2 mV. Current limit threshold is assured to a tolerance of 5%. Oscillator discharge current is specified at 10 mA for accurate dead time control. Frequency accuracy is improved to 6%. Startup supply current, typically 100 μ A, is ideal for off-line applications. The output drivers are redesigned to actively sink current during UVLO at no expense to the startup current specification. In addition each output is capable of 2-A peak currents during transitions.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UC2825A-EP

SGLS305 - JULY 2005

BLOCK DIAGRAM

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

Functional improvements have also been implemented in this family. The UC2825 shutdown comparator is now a high-speed overcurrent comparator with a threshold of 1.2 V. The overcurrent comparator sets a latch that ensures full discharge of the soft-start capacitor before allowing a restart. While the fault latch is set, the outputs are in the low state. In the event of continuous faults, the soft-start capacitor is fully charged before discharge to insure that the fault frequency does not exceed the designed soft start period. The UC2825 CLOCK pin has become CLK/LEB. This pin combines the functions of clock output and leading edge blanking adjustment and has been buffered for easier interfacing.

The UC2825AQ has dual alternating outputs and the same pin configuration of the UC2825. UVLO thresholds are identical to the original UC2825.

Consult the application note, *The UC3823A,B and UC2825A,B Enhanced Generation of PWM Controllers*, (SLUA125) for detailed technical and applications information.

ORDERING INFORMATION

		UV	LO		
Та	MAXIMUM DUTY CYCLE	9.2 V / 8.4 V			
'A		SOIC–16 (DW)	PDIP		
-40°C to 125°C	< 50%	UC2825AQDW	UC2825AN		

PIN ASSIGNMENTS

DW PACKAGE
(TOP VIEW)

(
INV [1	U	16] VREF
NI [2		15] vcc
EAOUT [3		14] ООТВ
CLK/LEB	4		13] VC
RT [5		12] PGND
СТ [6		11] OUTA
RAMP [7		10] GND
SS [8		9] ILIM

TERMINAL FUNCTIONS

TERMI	NAL		
	NO.	I/O	DESCRIPTION
NAME	DW		
CLK/LEB	4	0	Output of the internal oscillator
СТ	6	I	Timing capacitor connection pin for oscillator frequency programming. The timing capacitor should be connected to the device ground using minimal trace length.
EAOUT	3	0	Output of the error amplifier for compensation
GND	10	-	Analog ground return pin
ILIM	9	I	Input to the current limit comparator
INV	1	Ι	Inverting input to the error amplifier
NI	2	I	Non-inverting input to the error amplifier
OUTA	11	0	High current totem pole output A of the on-chip drive stage.
OUTB	14	0	High current totem pole output B of the on-chip drive stage.
PGND	12	-	Ground return pin for the output driver stage
RAMP	7	I	Non-inverting input to the PWM comparator with 1.25-V internal input offset. In voltage mode operation, this serves as the input voltage feed-forward function by using the CT ramp. In peak current mode operation, this serves as the slope compensation input.
RT	5	Ι	Timing resistor connection pin for oscillator frequency programming
SS	8	Ι	Soft-start input pin which also doubles as the maximum duty cycle clamp.
VC	13	_	Power supply pin for the output stage. This pin should be bypassed with a $0.1-\mu F$ monolithic ceramic low ESL capacitor with minimal trace lengths.
VCC	15	-	Power supply pin for the device. This pin should be bypassed with a 0.1- μ F monolithic ceramic low ESL capacitor with minimal trace lengths
VREF	16	0	5.1-V reference. For stability, the reference should be bypassed with a $0.1-\mu$ F monolithic ceramic low ESL capacitor and minimal trace length to the ground plane.

SGLS305 - JULY 2005

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

			UNIT
VIN	Supply voltage,	VC, VCC	22 V
IO	Source or sink current, DC	OUTA, OUTB	0.5 A
IO	Source or sink current, pulse (0.5 μ s)	OUTA, OUTB	2.2 A
	Anglesiente	INV, NI, RAMP	–0.3 V to 7 V
	Analog inputs	ILIM, SS	–0.3 V to 6 V
	Power ground	PGND	±0.2 V
ICLK	Clock output current	CLK/LEB	–5 mA
IO(EA)	Error amplifier output current	EAOUT	5 mA
ISS	Soft-start sink current	SS	20 mA
losc	Oscillator charging current	RT	–5 mA
Тј	Operating virtual junction temperature ra	ange	–55°C to 150°C
T _{stg}	Storage temperature		–65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from	–55C°C to 150°C	
^t STG	Storage temperature		-65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from	om cases for 10 seconds	300°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 125°C, $R_T = 3.65 \text{ k}\Omega$, $C_T = 1 \text{ nF}$, $V_{CC} = 12 \text{ V}$, $T_A = T_J$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFER	ENCE, V _{REF}	· · ·				•
VO	Ouput voltage range	$T_J = 25^{\circ}C$, $I_O = 1 \text{ mA}$	5.05	5.1	5.15	V
	Line regulation	$12 \text{ V} \leq \text{ VCC } \leq 20 \text{ V}$		2	15	
	Load regulation	$1 \text{ mA} \le I_{O} \le 10 \text{ mA}$		5	20	mV
	Total output variation	Line, load, temperature	5.03		5.17	V
	Temperature stability ⁽¹⁾	$T_{(min)} < T_A < T_{(max)}$		0.2	0.4	mV/°C
	Output noise voltage(1)	10 Hz < f < 10 kHz		50		μVRMS
	Long term stability ⁽¹⁾	$T_{J} = 125^{\circ}C$, 1000 hours		5	25	mV
	Short circuit current	VREF = 0 V	30	60	90	mA
OSCILI	ATOR	· · ·	L.			•
	(1)	$T_J = 25^{\circ}C$	375	400	425	kHz
TOSC	Initial accuracy(')	$R_T = 6.6 \text{ k}\Omega$, $C_T = 220 \text{ pF}$, $T_A = 25^{\circ}\text{C}$	0.9	1	1.1	MHz
	T (1)	Line, temperature	350		450	kHz
	Iotal variation(1)	$R_{T} = 6.6 \text{ k}\Omega, C_{T} = 220 \text{ pF},$	0.85		1.15	MHz
	Voltage stability	12 V < VCC < 20 V			1%	
	Temperature stability ⁽¹⁾	$T_{(min)} < T_A < T_{(max)}$		5%		
	High-level output voltage, clock		3.7	4		
	Low-level output voltage, clock			0	0.2	
	Ramp peak		2.6	2.8	3	V
	Ramp valley		0.7	1	1.25	
	Ramp valley-to-peak		1.6	1.8	2	
losc	Oscillator discharge current	$R_T = OPEN, V_{CT} = 2 V$	9	10	11	mA

(1) Ensured by design. Not production tested.

SGLS305 - JULY 2005

ELECTRICAL CHARACTERISTICS (CONTINUED) $T_A = -40^{\circ}C$ to 125°C, $R_T = 3.65 \text{ k}\Omega$, $C_T = 1 \text{ nF}$, $V_{CC} = 12 \text{ V}$, $T_A = T_J$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ERROR	AMPLIFIER	·	•			
	Input offset voltage			2	10	mV
	Input bias current			0.6	3	
	Input offset current			0.1	1	μΑ
	Open loop gain	1 V < V _O < 4 V	60	95		
CMRR	Common mode rejection ratio	1.5 V < V _{CM} < 5.5 V	75	95		dB
PSRR	Power supply rejection ratio	12 V < V _{CC} < 20 V	85	110		
I _{O(sink)}	Output sink current	V _{EAOUT} = 1 V	1	2.5		~ ^
IO(src)	Output source current	VEAOUT = 4 V	-0.5	-1.3		mA
	High-level output voltage	$I_{EAOUT} = -0.5 \text{ mA}$	4.5	4.7	5	V
	Low-level output voltage	$I_{EAOUT} = -1 \text{ mA}$	0	0.5	1	V
	Gain bandwidth product	f = 200 kHz	6	12		Mhz
	Slew rate ⁽¹⁾		6	9		V/µs
PWM CC	OMPARATOR					
IBIAS	Bias current, RAMP	V _{RAMP} = 0 V		-1	-8	μA
	Minimum duty cycle				0%	
	Maximum duty cycle		85%			
t _{LEB}	Leading edge blanking time	$R_{LEB} = 2 k\Omega$, $C_{LEB} = 470 pF$	300	375	450	ns
R _{LEB}	Leading edge blanking resistance	V _{CLK/LEB} = 3 V	8.5	10	11.5	kΩ
VZDC	Zero dc threshold voltage, EAOUT	V _{RAMP} = 0 V	1.1	1.25	1.4	V
^t DELAY	Delay-to-output time	VEAOUT = 2.1 V, VILIM = 0 V to 2 V step		50	80	ns
CURRE	NT LIMIT / START SEQUENCE / FAULT					
ISS	Soft-start charge current	$V_{SS} = 2.5 V$	8	14	20	μA
VSS	Full soft-start threshold voltage		4.3	5		V
IDSCH	Restart discharge current	$V_{SS} = 2.5 V$	100	250	350	μΑ
ISS	Restart threshold voltage			0.3	0.5	V
IBIAS	ILIM bias current	V _{ILIM} = 0 V to 2 V step			15	μΑ
ICL	Current limit threshold voltage		0.95	1	1.05	N
	Overcurrent threshold voltage		1.14	1.2	1.26	V
t _d	Delay-to-output time, ILIM(1)	V _{ILIM} = 0 V to 2 V step		50	80	ns
OUTPUT	г					
		$I_{OUT} = 20 \text{ mA}$		0.25	0.4	
	Low-level output saturation voltage	I _{OUT} = 200 mA		1.2	2.2	V
		$I_{OUT} = 20 \text{ mA}$		1.9	2.9	v
	High-level output saturation voltage	I _{OUT} = 200 mA		2	3	
t _{r,} t _f	Rise/fall time(1)	C _L = 1 nF		20	45	ns
UNDER	/OLTAGE LOCKOUT (UVLO)					
	Start threshold voltage		8.4	9.2	9.6	
	OVLO hysteresis		0.4	0.8	1.2	V
SUPPLY	CURRENT					
I _{su}	Startup current	$VC = VCC = V_{TH} = -0.5 V$		100	300	μA
ICC	Input current			28	36	mA

(1) Ensured by design. Not production tested.

APPLICATION INFORMATION

The oscillator of the UC2825A is a saw tooth. The rising edge is governed by a current controlled by the RT pin and value of capacitance at the CT pin (C_{CT}). The falling edge of the sawtooth sets dead time for the outputs. Selection of RT should be done first, based on desired maximum duty cycle. CT can then be chosen based on the desired frequency (RT) and D_{MAX} . The design equations are:

$$R_{T} = \frac{3 V}{(10 \text{ mA}) \times (1 - D_{MAX})} \qquad C_{T} = \frac{(1.6 \times D_{MAX})}{(R_{T} \times f)}$$
(1)

Recommended values for R_T range from 1 k Ω to 100 k Ω . Control of D_{MAX} less than 70% is not recommended.

UDG-95102

Figure 1. Oscillator

(2)

LEADING EDGE BLANKING

The UC2825AQ performs fixed frequency pulse width modulation control. TheUC2825AQ outputs are alternately controlled. During every other cycle, one output is off. Each output then switches at one-half the oscillator frequency, varying in duty cycle from 0 to less than 50%.

To limit maximum duty cycle, the internal clock pulse blanks both outputs low during the discharge time of the oscillator. On the falling edge of the clock, the appropriate output(s) is driven high. The end of the pulse is controlled by the PWM comparator, current limit comparator, or the overcurrent comparator.

Normally the PWM comparator senses a ramp crossing a control voltage (error amplifier output) and terminates the pulse. Leading edge blanking (LEB) causes the PWM comparator to be ignored for a fixed amount of time after the start of the pulse. This allows noise inherent with switched mode power conversion to be rejected. The PWM ramp input may not require any filtering as result of leading edge blanking.

To program a leading edge blanking (LEB) period, connect a capacitor, C, to CLK/LEB. The discharge time set by C and the internal $10-k\Omega$ resistor determines the blanked interval. The $10-k\Omega$ resistor has a 10% tolerance. For more accuracy, an external $2-k\Omega$ 1% resistor (R) can be added, resulting in an equivalent resistance of $1.66 k\Omega$ with a tolerance of 2.4%. The design equation is:

 $t_{\text{I FB}} = 0.5 \times (\text{R} \parallel 10 \text{ k}\Omega) \times \text{C}$

Values of R less than 2 k Ω should not be used.

Leading edge blanking is also applied to the current limit comparator. After LEB, if the ILIM pin exceeds the 1-V threshold, the pulse is terminated. The overcurrent comparator, however, is not blanked. It catches catastrophic overcurrent faults without a blanking delay. Any time the ILIM pin exceeds 1.2 V, the fault latch is set and the outputs driven low. For this reason, some noise filtering may be required on the ILIM pin.

UDG-95105

Figure 4. Leading Edge Blanking Operational Waveforms

Soft-start is programmed by a capacitor on the SS pin. At power up, SS is discharged. When SS is low, the error amplifier output is also forced low. While the internal $9-\mu A$ source charges the SS pin, the error amplifier output follows until closed loop regulation takes over.

Anytime ILIM exceeds 1.2 V, the fault latch is set and the output pins are driven low. The soft-start cap is then discharged by a 250- μ A current sink. No more output pulses are allowed until soft-start is fully discharged and ILIM is below 1.2 V. At this point the fault latch resets and the chip executes a soft-start.

Should the fault latch get set during soft-start, the outputs are immediately terminated, but the soft-start capacitor does not discharge until it has been fully charged first. This results in a controlled hiccup interval for continuous fault conditions.

Figure 5. Soft-Start and Fault Waveforms

ACTIVE LOW OUTPUTS DURING UVLO

The UVLO function forces the outputs to be low and considers both VCC and VREF before allowing the chip to operate.

Figure 6. Output Voltage vs Output Current

Figure 7. Output V and I During UVLO

RUMENTS

www.ti.com

CONTROL METHODS

Figure 8. Control Methods

SYNCHRONIZATION

The oscillator can be synchronized by an external pulse inserted in series with the timing capacitor. Program the free running frequency of the oscillator to be 10% to 15% slower than the desired synchronous frequency. The pulse width should be greater than 10 ns and less than half the discharge time of the oscillator. The rising edge of the CLK/LEB pin can be used to generate a synchronizing pulse for other chips. Note that the CLK/LEB pin no longer accepts an incoming synchronizing signal.

Figure 11. Operational Waveforms

SGLS305 - JULY 2005

HIGH-CURRENT OUTPUTS

Each totem pole output of the UC2825AQ can deliver a 2-A peak current into a capacitive load. The output can slew a 1000-pF capacitor by 15 V in approximately 20 ns. Separate collector supply (VC) and power ground (PGND) pins help decouple the device's analog circuitry from the high-power gate drive noise. The use of 3-A Schottky diodes (1N5120, USD245, or equivalent) as shown in the Figure 13 from each output to both VC and PGND are recommended. The diodes clamp the output swing to the supply rails, necessary with any type of inductive/capacitive load, typical of a MOSFET gate. Schottky diodes must be used because a low forward voltage drop is required. DO NOT USE standard silicon diodes.

Figure 12. Power MOSFET Drive Circuit

GROUND PLANES

Each output driver of these devices is capable of 2-A peak currents. Careful layout is essential for correct operation of the chip. A ground plane must be employed. A unique section of the ground plane must be designated for high di/dt currents associated with the output stages. This point is the power ground to which the PGND pin is connected. Power ground can be separated from the rest of the ground plane and connected at a single point, although this is not necessary if the high di/dt paths are well understood and accounted for. VCC should be bypassed directly to power ground with a good high frequency capacitor. The sources of the power MOSFET should connect to power ground as should the return connection for input power to the system and the bulk input capacitor. The output should be clamped with a high current Schottky diode to both VCC and PGND. Nothing else should be connected to power ground.

VREF should be bypassed directly to the signal portion of the ground plane with a good high frequency capacitor. Low ESR/ESL ceramic 1-mF capacitors are recommended for both VCC and VREF. All analog circuitry should likewise be bypassed to the signal ground plane.

Figure 13. Ground Planes Diagram

OPEN LOOP TEST CIRCUIT

This test fixture is useful for exercising many functions of this device family and measuring their specifications. As with any wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly recommended.

Figure 14. Open Loop Test Circuit Schematic

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

💠 Texas Instrume	Technology for	Innovators [™]	search Tl.com all searches	Enter Keyword
products applica	ations design support	buy		Contact Us TI W
Home > Semiconductors > Analog	& Mixed-Signal > Power Management > A	AC/DC and DC/DC Power S	Supplies > PWM Power	Supply Controllers >
JC2825A-EP, Status: ACTI ligh-Speed PWM Controller	VE			
Lear gif	_			Pefine Your Selection
Features	Samples	Technical Doo	cuments	- Selection Guides
Quality & Pb-Free Data	Pricing/Packaging	Applications	Notes	- Analog & Mixed-Signa
Related Products				Fower Supply Contione
Dow nload Datasheet High- 21 Jul Product Information	Speed PWM Controller (uc2825a- 2005 Download	-ep.pdf, 320 KB)		- TI Cross Reference - Training - Part Marking Lookup
Features	Save this	s to your personal libr	ary	
Controlled Baseline - One Assembly/Tesi - One Fabrication Sit Extended Temperature Enhanced Diminishing Enhanced Product-Cha Qualification Pedigree Improved Version of th Compatible with Voltag Practical Operation at 1 50-ns Propagation Del High-Current Dual Tota Trimmed Oscillator Dis Low 100-µA Startup Cu Pulse-by-Pulse Curren	: Site e Performance of -40°C to 125°C Manufacturing Sources (DMS) Supp nge Notification 1) ne UC2825 PWM ge-Mode or Current-Mode Control N Switching Frequencies to 1 MHz ay to Output em Pole Outputs (2-A Peak) charge Current urrent t Limiting Comparator	port Methods		

Description

The UC2825AQ PWM controller is a improved version of the standard UC2825. Performance enhancements have been made to several of the circuit blocks. Error amplifier gain bandwidth product is 12 MHz, while input offset voltage is 2 mV. Current limit threshold is assured to a tolerance of 5%. Oscillator discharge current is specified at 10 mA for accurate dead time control. Frequency accuracy is improved to 6%. Startup supply current, typically 100 μ A, is ideal for off-line applications. The output drivers are redesigned to actively sink current during UVLO at no expense to the startup current specification. In addition each output is capable of 2-A peak currents during transitions.

Functional improvements have also been implemented in this family. The UC2825 shutdown comparator is now a high-speed overcurrent comparator with a threshold of 1.2 V. The overcurrent comparator sets a latch that ensures full discharge of the soft-start capacitor before allowing a restart. While the fault latch is set, the outputs are in the low state. In the event of continuous faults, the soft-start capacitor is fully charged before discharge to insure that the fault frequency does not exceed the designed soft start period. The UC2825 CLOCK pin has become CLK/LEB. This pin combines the functions of clock output and leading edge blanking adjustment and has been buffered for easier interfacing.

The UC2825AQ has dual alternating outputs and the same pin configuration of the UC2825. UVLO thresholds are identical to the original UC2825.

Consult the application note, *The UC3823A,B and UC2825A,B Enhanced Generation of PWM Controllers*, (SLUA125) for detailed technical and applications information.

Pricing/Packaging/CAD Design Tools/Samples										
				Price	Price Packaging			CAD Des	Samples	
Device	Status	Temp (°C)	DSCC #	Budget Price (\$US) QTY	Industry Standard (TI Pkg) Pins	Top Side Marking	Standard Pack Quantity	Symbols	Footprints	Samples
UC2825AQDWREP	ACTIVE	-40 to 125	V62/05616- 01XE	7.00 1KU	SOIC (DW) 16	View	2000			Request Military Samples
V62/05616-01XE	ACTIVE	-40 to 125		7.00 1KU	SOIC (DW) 16	View	2000			Request Military Samples

Inventory								
		TI Inventory Status			Reported Distributor Inventory			
UC2825AQDWREP	As c	of 8:26 AM GMT, 3	25 Nov 2005	As o	of 8:26 AM	GMT,	25 Nov 2005	Choos
	In Stock	In Progress QTY Date	Lead Time	Region	Company	In Stock	Purchase	
	0*	1592 16 Dec	8 Weeks	None Re View Dis	eported stributors			_
V62/05616-01XE	As c	of 8:26 AM GMT, 2	25 Nov 2005	As o	of 8:26 AM	GMT,	25 Nov 2005	
	In Stock	In Progress QTY Date	Lead Time	Region	Company	In Stock	Purchase	
	0*	1592 16 Dec	8 Weeks	None Re View Dis	eported stributors			

II Distributors se a Region

!

* Our information is updated daily, so please check back with us ** Lead time information is not available at this time. However, soon if this does not meet your needs. You may also contact your TI Authorized Distributor, including those listed above, for real time stock information.

our information is updated daily so please check back with us soon. Please contact your preferred TI Authorized Distributor for additional information.

Quality & Lead (Pb)-Free Data							
		MTBF/FIT Rate					
Device	Eco Plan*	Lead/Ball Finish	MSL Rating/Peak Reflow	Details	Details		
UC2825AQDWREP	TBD	CU NIPDAU	Level-2-220C-1 YEAR	View	View		
V62/05616-01XE	TBD	CU NIPDAU	Level-2-220C-1 YEAR	View	View		

* The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please click on the Product Content Details "View" link in the table above for the latest availability information and additional product content details.

If the information you are requesting is not available online at this time, contact one of our Product Information Centers regarding the availability of this information.

Keep track of what's new

Technical Documents

Datasheets

High-Speed PWM Controller (uc2825a-ep.pdf, 320 KB)

21 Jul 2005 Download

Application Notes

View Application Notes for PWM Power Supply Controllers

Products | Applications | Design Support | Buy | Contact Us | TI Worldwide | my.TI Login | All Searches | Company Info | Press Releases | RSS | Site Map

© Copyright 1995-2005 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Terms of Use

i2 Technologies US, Inc. 15445 Innovation Drive San Diego, CA 92128

i2 Technologies US, Inc.

HTML Pages converted to PDF Document

This document contain component information from the manufacturer's website which are not available in a revision controlled document from the manufacturer. To facilitate the addition of these parts into the Electronics Database, we are converting the HTML pages related to that part, from the manufacturer's website into Adobe PDF format. The contents of this document is based on the information provided on the manufacturer's website, therefore the information may have been changed by the manufacturer since this was created.

Powering the Bottom Line ®