

| FE | ATURES                                                                  | DCC                     |         | PACKAGE                  |
|----|-------------------------------------------------------------------------|-------------------------|---------|--------------------------|
| ٠  | Member of Texas Instruments Widebus™                                    | Dee                     | (TOP VI |                          |
|    | Family                                                                  |                         |         | – í                      |
| •  | UBT™ Transceiver Combines D-Type Latches                                | OEAB                    |         | 56 🛛 CEAB                |
|    | and D-Type Flip-Flops for Operation in                                  | LEAB                    | 2       | 55 CLKAB                 |
|    | Transparent, Latched, Clocked, or                                       | A1                      |         | 54 B1                    |
|    | Clock-Enabled Modes                                                     | GND                     |         | 53 GND                   |
| •  | OEC <sup>™</sup> Circuitry Improves Signal Integrity and                | A2                      |         | 52 B2                    |
|    | Reduces Electromagnetic Interference                                    | A3                      |         | 51 B3                    |
| •  | Bidirectional Interface Between GTLP Signal                             | V <sub>CC</sub> (3.3 V) |         | 50 V <sub>CC</sub> (5 V) |
|    | Levels and LVTTL Logic Levels                                           | A4                      |         | 49 B4                    |
| •  | LVTTL Interfaces are 5-V Tolerant                                       |                         | 9       | 48 B5                    |
| •  | Medium-Drive GTLP Outputs (34 mA)                                       | A6<br>GND               | 10      | 47 B6<br>46 GND          |
| •  | LVTTL Outputs (–32 mA/64 mA)                                            |                         | 12      | 46 GND<br>45 B7          |
|    | • • • •                                                                 |                         | 13      | 43 B8                    |
| •  | GTLP Rise and Fall Times Designed for                                   |                         | 14      | 43 B9                    |
|    | Optimal Data-Transfer Rate and Signal<br>Integrity in Distributed Loads | A3                      |         | 42 B10                   |
|    |                                                                         | A11                     |         | 41 B11                   |
| •  | I <sub>off</sub> Supports Partial-Power-Down Mode                       | A12                     |         | 40 B12                   |
|    | Operation                                                               | GND                     |         | 39 GND                   |
| •  | Bus Hold on A-Port Inputs                                               | A13                     | 19      | 38 B13                   |
| •  | Distributed V <sub>CC</sub> and GND Pins Minimize                       | A14                     | 20      | 37 🛛 B14                 |
|    | High-Speed Switching Noise                                              | A15                     | 21      | 36 B15                   |
| ٠  | Latch-Up Performance Exceeds 100 mA Per                                 | V <sub>CC</sub> (3.3 V) | 22      | 35 🛛 V <sub>REF</sub>    |
|    | JESD 78, Class II                                                       | A16                     |         | 34 🛛 B16                 |
| ٠  | ESD Protection Exceeds JESD 22                                          | A17                     |         | 33 B17                   |
|    | – 2000-V Human-Body Model (A114-A)                                      | GND                     |         | 32 GND                   |
|    | - 200-V Machine Model (A115-A)                                          | A18                     |         | 31 B18                   |
|    | - 1000-V Charged-Device Model (C101)                                    | OEBA                    |         |                          |
|    |                                                                         | LEBA                    | - 28    | 29 CEBA                  |
|    |                                                                         |                         |         |                          |
| DE | SCRIPTION                                                               |                         |         |                          |

The SN74GTLPH16612 is a medium-drive, 18-bit UBT™ transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, or clock-enabled modes of data transfer. This device provides a high-speed interface between cards operating at LVTTL logic levels and backplanes operating at GTLP signal levels. High-speed (about two times faster than standard LVTTL or TTL) backplane operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC<sup>™</sup> circuitry. These improvements minimize bus-settling time and have been designed and tested using several backplane models.

GTLP is a Texas Instruments (TI<sup>™</sup>) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH16612 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ( $V_{TT} = 1.2$  V and  $V_{REF} = 0.8$  V) or GTLP ( $V_{TT} = 1.5$  V and

 $V_{REF} = 1 V$ ) signal levels.

The B port normally operates at GTLP levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V<sub>RFF</sub> is the reference input voltage for the B port.

To improve signal integrity, the SN74GTLPH16612 B-port output transition time is optimized for distributed backplane loads.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus, UBT, OEC, TI are trademarks of Texas Instruments.



SCESS26C-MARCH 2000-REVISED MAY 2005

### **DESCRIPTION (CONTINUED)**

V<sub>CC</sub> (5 V) supplies the internal and GTLP circuitry, while V<sub>CC</sub> (3.3 V) supplies the LVTTL output buffers.

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

#### **ORDERING INFORMATION**

| T <sub>A</sub> | PACK        | AGE <sup>(1)</sup> | ORDERABLE PART NUMBER | TOP-SIDE MARKING |  |
|----------------|-------------|--------------------|-----------------------|------------------|--|
|                |             | Tube               | SN74GTLPH16612DL      |                  |  |
| –40°C to 85°C  | SSOP – DL   | Tape and reel      | SN74GTLPH16612DLR     | GTLPH16612       |  |
|                | TSSOP – DGG | Tape and reel      | SN74GTLPH16612GR      | GTLPH16612       |  |

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

### FUNCTIONAL DESCRIPTION

The SN74GTLPH16612 is a medium-drive (34 mA), 18-bit UBT transceiver, containing D-type latches and D-type flip-flops to allow data flow in transparent, latched, clocked, and clock-enabled modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

| Table 1. SN74GTLPH16612 UBT Transceiver Replacement Functions |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

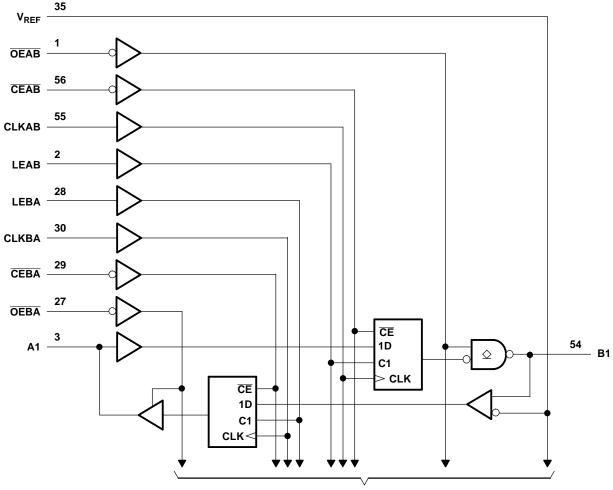
| FUNCTION                                 | 8 BIT            | 9 BIT | 10 BIT | 16 BIT                 | 18 BIT         |
|------------------------------------------|------------------|-------|--------|------------------------|----------------|
| Transceiver                              | '245, '623, '645 | '863  | '861   | '16245, '16623         | '16863         |
| Buffer/driver                            | '241, '244, '541 |       | '827   | '16241, '16244, '16541 | '16825         |
| Latched transceiver                      | '543             |       |        | '16543                 | '16472         |
| Latch                                    | '373, '573       | '843  | '841   | '16373                 | '16843         |
| Registered transceiver                   | '646, '652       |       |        | '16646, '16652         | '16474         |
| Flip-flop                                | '374, '574       |       | '821   | '16374                 |                |
| Standard UBT                             |                  |       |        |                        | '16500, '16501 |
| Universal bus driver                     |                  |       |        |                        | '16835         |
| Registered transceiver with clock enable | '2952            |       |        | '16470, '16952         |                |
| Flip-flop with clock enable              | '377             | '823  |        |                        | '16823         |
| Standard UBT with clock enable           |                  |       |        |                        | '16600, '16601 |

Data flow in each direction is controlled by the clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (OEAB and OEBA).

For A-to-B data flow, when CEAB is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if CEAB and LEAB are low, the A data is latched, regardless of the state of CLKAB (high or low) and if LEAB is high, the device is in transparent mode. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state.

The data flow for B-to-A is similar to that of A-to-B, except that CEBA, OEBA, LEBA, and CLKBA are used.

|      |      | INPUTS |            |   | OUTPUT                        | MODE                       |
|------|------|--------|------------|---|-------------------------------|----------------------------|
| CEAB | OEAB | LEAB   | CLKAB      | Α | В                             | MODE                       |
| Х    | Н    | Х      | Х          | Х | Z                             | Isolation                  |
| L    | L    | L      | Н          | Х | B <sub>0</sub> <sup>(2)</sup> | Latabad stars as of A data |
| L    | L    | L      | L          | Х | B <sub>0</sub> <sup>(3)</sup> | Latched storage of A data  |
| Х    | L    | Н      | Х          | L | L                             | True transport             |
| Х    | L    | Н      | Х          | Н | н                             | True transparent           |
| L    | L    | L      | $\uparrow$ | L | L                             | Clocked storage of A data  |
| L    | L    | L      | $\uparrow$ | н | н                             | Clocked storage of A data  |
| Н    | L    | L      | Х          | Х | B <sub>0</sub> <sup>(3)</sup> | Clock inhibit              |


### FUNCTION TABLE<sup>(1)</sup>

(1) A-to-B data flow is shown. B-to-A data flow is similar, but uses CEBA, OEBA, LEBA, and CLKBA. The condition when OEAB and OEBA are both low at the same time is not recommended.

(2) Output level before the indicated steady-state input conditions were established, provided that
 (2) Club and CLA and CLA are being to the indicated steady-state input conditions were established, provided that

CLKAB was high before LEAB went low.

(3) Output level before the indicated steady-state input conditions were established.



#### LOGIC DIAGRAM (POSITIVE LOGIC)

To 17 Other Channels

## SN74GTLPH16612 18-BIT LVTTL-TO-GTLP UNIVERSAL BUS TRANSCEIVER

SCES326C-MARCH 2000-REVISED MAY 2005

#### Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                  |                                                                 |                             | MIN  | MAX  | UNIT |
|------------------|-----------------------------------------------------------------|-----------------------------|------|------|------|
| V                |                                                                 | 3.3 V                       | -0.5 | 4.6  | V    |
| V <sub>CC</sub>  | Supply voltage range                                            | 5 V                         | -0.5 | 7    | v    |
| V                | lanut valtaga ranga(2)                                          | A port and control inputs   | -0.5 | 7    | V    |
| VI               | Input voltage range <sup>(2)</sup>                              | B port and V <sub>REF</sub> | -0.5 | 4.6  | v    |
| V                | Voltage range applied to any output in the high-impedance or    | A port                      | -0.5 | 7    | V    |
| Vo               | power-off state <sup>(2)</sup>                                  | B port                      | -0.5 | 4.6  | v    |
|                  | Comment into any output in the law state                        | A port                      |      | 128  | 0    |
| I <sub>O</sub>   | Current into any output in the low state                        | B port                      |      | 80   | mA   |
| lo               | Current into any A-port output in the high state <sup>(3)</sup> |                             |      | 64   | mA   |
|                  | Continuous current through each $V_{CC}$ or GND                 |                             |      | ±100 | mA   |
| I <sub>IK</sub>  | Input clamp current                                             | V <sub>1</sub> < 0          |      | -50  | mA   |
| I <sub>OK</sub>  | Output clamp current                                            | V <sub>O</sub> < 0          |      | -50  | mA   |
| 0                |                                                                 | DGG package                 |      | 64   | °C/W |
| $\theta_{JA}$    | Package thermal impedance <sup>(4)</sup>                        | DL package                  |      | 56   |      |
| T <sub>stg</sub> | Storage temperature range                                       |                             | -65  | 150  | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (2)

(3)

This current flows only when the output is in the high state and  $V_0 > V_{CC}$ . The package thermal impedance is calculated in accordance with JESD 51-7. (4)

### Recommended Operating Conditions<sup>(1)(2)(3)(4)</sup>

|                  |                                      |               | MIN                      | NOM             | MAX                   | UNIT |
|------------------|--------------------------------------|---------------|--------------------------|-----------------|-----------------------|------|
| V                | Supply voltage                       | 3.3 V         | 3.15                     | 3.3             | 3.45                  | V    |
| V <sub>CC</sub>  | Supply voltage                       | 5 V           | 4.75                     | 5               | 5.25                  | v    |
| V                |                                      | GTL           | 1.14                     | 1.2             | 1.26                  | V    |
| $V_{TT}$         | Termination voltage                  | GTLP          | 1.35                     | 1.5             | 1.65                  | v    |
|                  |                                      | GTL           | 0.74                     | 0.8             | 0.87                  |      |
| V <sub>REF</sub> | Reference voltage                    | GTLP          | 0.87                     | 1               | 1.1                   | V    |
| V                |                                      | B port        |                          |                 | V <sub>TT</sub>       |      |
| VI               | Input voltage                        | Except B port |                          | V <sub>CC</sub> | 5.5                   | V    |
| V                | High lovel input veltage             | B port        | V <sub>REF</sub> + 50 mV |                 |                       | V    |
| V <sub>IH</sub>  | High-level input voltage             | Except B port | 2                        |                 |                       | v    |
| V                |                                      | B port        |                          | VR              | <sub>EF</sub> – 50 mV | V    |
| V <sub>IL</sub>  | Low-level input voltage              | Except B port |                          |                 | 0.8                   | v    |
| I <sub>IK</sub>  | Input clamp current                  |               |                          |                 | -18                   | mA   |
| I <sub>OH</sub>  | High-level output current            | A port        |                          |                 | -32                   | mA   |
|                  | Level being being being and an and a | A port        |                          |                 | 64                    |      |
| I <sub>OL</sub>  | Low-level output current             | B port        |                          |                 | 34                    | mA   |
| T <sub>A</sub>   | Operating free-air temperature       |               | -40                      |                 | 85                    | °C   |

(1) All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Normal connection sequence is GND first,  $V_{CC} = 5$  V second, and  $V_{CC} = 3.3$  V, I/O, control inputs,  $V_{TT}$ , and  $V_{REF}$  (any order) last.  $V_{TT}$  and  $R_{TT}$  can be adjusted to accommodate backplane impedances if the dc recommended I<sub>OL</sub> ratings are not exceeded.

(3)

(4)  $V_{REF}$  can be adjusted to optimize noise margins, but normally is two-thirds  $V_{TT}$ .

SCES326C-MARCH 2000-REVISED MAY 2005

### **Electrical Characteristics**

over recommended operating free-air temperature range (unless otherwise noted)

| PARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METER          |                                                                                                                                                        | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIN         TYP <sup>(1)</sup> MAX           -1.2         -1.2 |     | UNIT |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----|------|-------|
| V <sub>IK</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | V <sub>CC</sub> (3.3 V) = 3.15 V,                                                                                                                      | V <sub>CC</sub> (5 V) = 4.75 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l <sub>l</sub> = –18 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |     | -1.2 | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | $V_{CC}$ (3.3 V) = 3.15 V to 3.45<br>$V_{CC}$ (5 V) = 4.75 V to 5.25                                                                                   | 5 V,<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>OH</sub> = -100 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>CC</sub> (3.3 V)<br>- 0.2                               |     |      |       |
| РАКАІ           VIK           VOH           VOL           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A port         |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>OH</sub> = -8 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                            |     |      | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>OL</sub> = 100 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |     | 0.2  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amout          |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>OL</sub> = 16 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |     | 0.4  |       |
| V <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А роп          | $V_{\rm CC} (3.3 \text{ V}) = 3.15 \text{ V},$                                                                                                         | $V_{\rm CC}$ (5 V) = 4.75 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>OL</sub> = 32 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |     | 0.5  | V     |
| $V_{OH} \qquad A port  V_{OL} \qquad A port  B port  Contra- In A port  B port  Contra- Inputs  A port  B port  Contra- B port  B port  Contra- Contra-$ |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B port         | $V_{CC}$ (3.3 V) = 3.15 V,                                                                                                                             | $V_{CC} (5 V) = 4.75 V$ $I_{OH} = I_{OH} = I_{OH} = I_{OH} = I_{OH} = I_{OH} = I_{OL} = V_{CC} (5 V) = 4.75 V, I_{OL} = V_{CC} (5 V) = 0 \text{ or } 5.25 V, V_{I} = 5$ $V_{CC} (5 V) = 5.25 V, V_{I} = 5$ $V_{CC} (5 V) = 5.25 V, V_{I} = 5$ $V_{CC} (5 V) = 5.25 V, V_{I} = 0$ $V_{CC} (5 V) = 5.25 V, V_{O} = I_{VCC} (5 V) = 5.25 V, I_{O} = 0, V_{I} = V_{TT} \text{ or } GND^{(4)}$ $V_{I} = V_{TT} \text{ or } GND^{(4)}$ | I <sub>OL</sub> = 34 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |     | 0.65 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control inputs | $V_{CC}$ (3.3 V) = 0 or 3.45 V,                                                                                                                        | $V_{CC}$ (5 V) = 0 or 5.25 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 4.75 \text{ V}, \qquad I_{I} = -18 \text{ mA}$ $I_{OH} = -100 \text{ µA}$ $= 4.75 \text{ V} \qquad I_{OH} = -8 \text{ mA}$ $I_{OH} = -32 \text{ mA}$ $I_{OL} = 100 \text{ µA}$ $I_{OL} = 10 \text{ µA}$ $I_{OL} = 32 \text{ mA}$ $I_{OL} = 32 \text{ mA}$ $I_{OL} = 64 \text{ mA}$ $= 4.75 \text{ V}, \qquad I_{OL} = 34 \text{ mA}$ $= 0 \text{ or } 5.25 \text{ V}, \qquad V_{I} = 5.5 \text{ V}$ $V_{I} = 5.5 \text{ V}$ $V_{I} = 0$ $= 5.25 \text{ V} \qquad V_{I} = 0$ $= 5.25 \text{ V} \qquad V_{I} = 0$ $= 4.75 \text{ V} \qquad V_{I} = 0$ $= 4.75 \text{ V} \qquad V_{I} = 0$ $= 5.25 \text{ V} \qquad V_{I} = 0$ $= 4.75 \text{ V} \qquad V_{I} = 0.8 \text{ V}$ $V_{I} = 0$ $= 4.75 \text{ V} \qquad V_{I} = 0.8 \text{ V}$ $V_{I} = 0 \text{ to } V_{CC} (3.3 \text{ V})$ $V_{I} = 0$ $= 5.25 \text{ V}, \qquad V_{O} = V_{CC} (3.3 \text{ V})$ $= 5.25 \text{ V}, \qquad V_{O} = V_{CC} (3.3 \text{ V})$ $= 5.25 \text{ V}, \qquad V_{O} = 0$ $= 0$ |                                                                |     | 10   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>I</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |     | 20   |       |
| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A port         | V <sub>CC</sub> (3.3 V) = 3.45 V,                                                                                                                      | V <sub>CC</sub> (5 V) = 5.25 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{I} = V_{CC} (3.3 V)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |     | 1    | μA    |
| II<br>II<br>Ioff<br>II(hold)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{I} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |     | -30  | Pr. 1 |
| I <sub>off</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{I} = V_{CC} (3.3 V)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |     | 5    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B port         | $V_{CC} (3.3 V) = 3.45 V,$                                                                                                                             | $V_{CC} (5 V) = 5.25 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>1</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 0 -                                                          |     | -5   |       |
| I <sub>off</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | V <sub>CC</sub> = 0,                                                                                                                                   | $V_{I}$ or $V_{O}$ = 0 to 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |     | 100  | μA    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>I</sub> = 0.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                             |     |      |       |
| I <sub>off</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anort          | $V_{aa}$ (3 3 V) = 3 15 V                                                                                                                              | $V_{aa}$ (5 V) = 4.75 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>1</sub> = 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -75                                                            |     |      | μA    |
| 'l(hold)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Apon           | VCC (0.0 V) = 0.10 V,                                                                                                                                  | VCC (5 V) = 4.75 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |     | ±500 | μΑ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A port         | V <sub>CC</sub> (3.3 V) = 3.45 V,                                                                                                                      | V <sub>CC</sub> (5 V) = 5.25 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{O} = V_{CC} (3.3 V)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |     | 1    |       |
| OZH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B port         | V <sub>CC</sub> (3.3 V) = 3.45 V,                                                                                                                      | V <sub>CC</sub> (5 V) = 5.25 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>O</sub> = 1.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |     | 10   | μA    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A port         | $V_{CC}$ (3.3 V) = 3.45 V,                                                                                                                             | V <sub>CC</sub> (5 V) = 5.25 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>O</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |     | -1   |       |
| OZL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B port         | $V_{CC}$ (3.3 V) = 3.45 V,                                                                                                                             | $V_{CC}$ (5 V) = 5.25 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>O</sub> = 0.65 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |     | -10  | μA    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |     | 1    |       |
| $I_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A or B         | $V_{CC}$ (3.3 V) = 3.45 V, $V_{CC}$ (3.3 V) or $CND^{(3)}$                                                                                             | 5 V) = 5.25 V, $I_0 = 0$ ,<br>V, - V or GND <sup>(4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outputs low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |     | 5    | mA    |
| (0.0 v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | port           | $v_{1} = v_{CC} (0.0 v) \text{ or } C(v_{D} v),$                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |     | 1    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |     | 120  |       |
| I <sub>CC</sub><br>(5.\/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A or B         | $V_{CC}$ (3.3 V) = 3.45 V, $V_{CC}$ (5 V) = 5.25 V, $I_{O}$ = 0,                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                | 120 |      | mA    |
| (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | port           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outputs disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |     | 120  |       |
| ΔI <sub>CC</sub> (3.3 V) <sup>(5)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | $V_{CC}$ (3.3 V) = 3.45 V, $V_{CC}$ (5 V) = 5.25 V, One A-port or control input at 2.7 V,<br>Other A-port or control inputs at $V_{CC}$ (3.3 V) or GND |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |     | 1    | mA    |
| C <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control inputs | V <sub>I</sub> = 3.15 V or 0                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | 4   |      | pF    |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A port         | V <sub>O</sub> = 3.15 V or 0                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | 8.5 |      |       |
| C <sub>io</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B port         | V <sub>O</sub> = 1.5 V or 0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | 8   |      | pF    |

(1)

All typical values are at  $V_{CC}$  (3.3 V) = 3.3 V,  $V_{CC}$  (5 V) = 5 V,  $T_A = 25^{\circ}C$ . This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to (2) another.

This is the  $V_I$  for A-port or control inputs. This is the  $V_I$  for B port. (3)

(4)

(5) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than  $V_{CC}$  or GND.

## SN74GTLPH16612 18-BIT LVTTL-TO-GTLP UNIVERSAL BUS TRANSCEIVER

SCES326C-MARCH 2000-REVISED MAY 2005

### Timing Requirements

over recommended ranges of supply voltage and operating free-air temperature,

 $V_{TT}$  = 1.5 V and  $V_{REF}$  = 1 V for GTLP (unless otherwise noted) (see Figure 1)

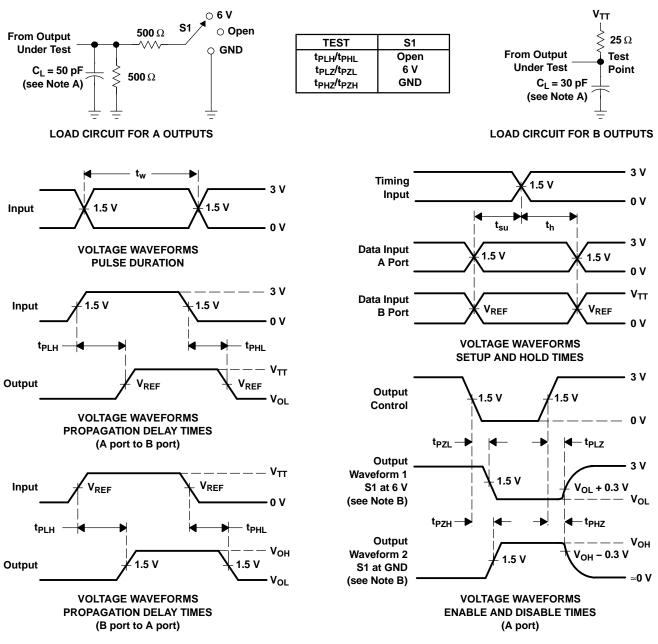
|                    |                                                       |                            | MIN                  | MAX | UNIT |
|--------------------|-------------------------------------------------------|----------------------------|----------------------|-----|------|
| f <sub>clock</sub> | Clock frequency                                       |                            |                      | 85  | MHz  |
|                    | Dulas duration                                        | LEAB or LEBA high          | 3.3                  |     | 20   |
| t <sub>w</sub>     | Pulse duration                                        | CLKAB or CLKBA high or low | 5.7                  |     | ns   |
|                    | k Clock frequency Pulse duration Setup time Hold time | A before CLKAB1            | 1                    |     |      |
|                    |                                                       | B before CLKBA↑            | 1.8                  |     |      |
| t <sub>ev</sub>    | O a torra d'ana                                       | A before LEAB↓             | 0.5                  |     |      |
| τ <sub>su</sub>    | Setup time                                            | B before LEBA↓             | 1.2                  |     | ns   |
|                    |                                                       | CEAB before CLKAB↑         | AB before CLKAB↑ 1.2 |     |      |
|                    |                                                       | CEBA before CLKBA↑         | 1.4                  |     |      |
|                    | Pulse duration Setup time                             | A after CLKAB↑             | 1.9                  |     |      |
|                    |                                                       | B after CLKBA↑             | 0.5                  |     |      |
|                    |                                                       | A after LEAB↓              | 2.7                  |     |      |
| ι <sub>h</sub>     | Hold time                                             | B after LEBA↓              | 3.5                  |     | ns   |
|                    |                                                       | CEAB after CLKAB↑          | 1.2                  |     |      |
|                    |                                                       | CEBA after CLKBA↑          | 1.1                  |     |      |

**TEXAS** 

INSTRUMENTS www.ti.com

### **Switching Characteristics**

over recommended ranges of supply voltage and operating free-air temperature,


 $V_{TT} = 1.5 \text{ V} \text{ and } V_{REF} = 1 \text{ V} \text{ for GTLP} \text{ (see Figure 1)}$ 

| PARAMETER        | FROM<br>(INPUT)      | TO<br>(OUTPUT)      | MIN TYP <sup>(1)</sup> | МАХ | UNIT |
|------------------|----------------------|---------------------|------------------------|-----|------|
| f <sub>max</sub> |                      |                     | 85                     |     | MHz  |
| t <sub>PLH</sub> | - A                  | В                   | 2.5                    | 6.9 | ns   |
| t <sub>PHL</sub> | A                    | D                   | 2.5                    | 6.9 | 115  |
| t <sub>PLH</sub> | LEAB                 | В                   | 3.2                    | 7.3 | ns   |
| t <sub>PHL</sub> | LEAD                 | D                   | 3.2                    | 7.3 | 115  |
| t <sub>PLH</sub> | CLKAB                | В                   | 3.4                    | 7.8 | 20   |
| t <sub>PHL</sub> | CLRAB                | D                   | 3.4                    | 7.8 | ns   |
| t <sub>en</sub>  | OEAB                 | В                   | 2.8                    | 7   | 20   |
| t <sub>dis</sub> | UEAB                 | D                   | 2.8                    | 7   | ns   |
| t <sub>r</sub>   | Transition time, B o | 2.6                 |                        | ns  |      |
| t <sub>f</sub>   | Transition time, B o | utputs (80% to 20%) | 2.6                    |     | ns   |
| t <sub>PLH</sub> | P                    | ٨                   | 1.5                    | 5.7 | ~~~  |
| t <sub>PHL</sub> | В                    | A                   | 1.5                    | 5.7 | ns   |
| t <sub>PLH</sub> | LEBA                 | ٨                   | 1.8                    | 5.7 | ~~~  |
| t <sub>PHL</sub> | LEDA                 | A                   | 1.8                    | 5.7 | ns   |
| t <sub>PLH</sub> |                      | ٨                   | 2.3                    | 5.5 | 20   |
| t <sub>PHL</sub> | CLKBA                | A                   | 2.3                    | 5.5 | ns   |
| t <sub>en</sub>  | OEBA                 | ۸                   | 1.8                    | 6.1 | 20   |
| t <sub>dis</sub> | UEDA                 | A                   | 1.8                    | 6.1 | ns   |

(1) All typical values are at V<sub>CC</sub> (3.3 V) = 3.3 V, V<sub>CC</sub> (5 V) = 5 V, T<sub>A</sub> = 25°C.

SCES326C-MARCH 2000-REVISED MAY 2005

### PARAMETER MEASUREMENT INFORMATION



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

Texas

TRUMENTS www.ti.com

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>0</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  2.5 ns. t<sub>f</sub>  $\leq$  2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

## SN74GTLPH16612 18-BIT LVTTL-TO-GTLP UNIVERSAL BUS TRANSCEIVER

SCES326C-MARCH 2000-REVISED MAY 2005

### **Distributed-Load Backplane Switching Characteristics**

The previous switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to an RLC circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

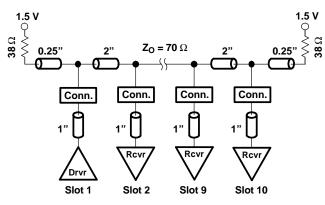
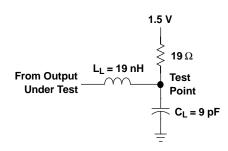




Figure 2. Medium-Drive Test Backplane



Texas

STRUMENTS www.ti.com

Figure 3. Medium-Drive RLC Network

### **Switching Characteristics**

over recommended ranges of supply voltage and operating free-air temperature,  $V_{TT} = 1.5$  V and  $V_{REF} = 1$  V for GTLP (see Figure 3)

| PARAMETER        | FROM<br>(INPUT)    | MIN TYP <sup>(1)</sup> | UNIT |     |  |
|------------------|--------------------|------------------------|------|-----|--|
| f <sub>max</sub> |                    |                        | 85   | MHz |  |
| t <sub>PLH</sub> | <b>^</b>           | В                      | 3.6  | 20  |  |
| t <sub>PHL</sub> | — A                | В                      | 3.6  | ns  |  |
| t <sub>PLH</sub> | LEAB               | В                      | 4.3  | ns  |  |
| t <sub>PHL</sub> | LLAD               | В                      | 4.3  |     |  |
| t <sub>PLH</sub> | CLKAB              | В                      | 4.4  |     |  |
| t <sub>PHL</sub> | CERAB              | В                      | 4.4  | ns  |  |
| t <sub>en</sub>  | OEAB               | В                      | 4.1  |     |  |
| t <sub>dis</sub> | OEAB               | В                      | 4.3  | ns  |  |
| t <sub>r</sub>   | Rise time, B outp  | 1.4                    | ns   |     |  |
| t <sub>f</sub>   | Fall time, B outpu | 2.1                    | ns   |     |  |

(1) All typical values are at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C. All values are derived from TI SPICE models.



11-Apr-2013

### PACKAGING INFORMATION

| Orderable Device  | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings | Samples |
|-------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|-------------------|---------|
|                   | (1)    |              | Drawing |      | Qty     | (2)                        |                  | (3)                |              | (4)               |         |
| 74GTLPH16612DLG4  | ACTIVE | SSOP         | DL      | 56   | 20      | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |
| 74GTLPH16612DLRG4 | ACTIVE | SSOP         | DL      | 56   | 1000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |
| 74GTLPH16612GRE4  | ACTIVE | TSSOP        | DGG     | 56   | 2000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |
| 74GTLPH16612GRG4  | ACTIVE | TSSOP        | DGG     | 56   | 2000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |
| SN74GTLPH16612DL  | ACTIVE | SSOP         | DL      | 56   | 20      | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |
| SN74GTLPH16612DLR | ACTIVE | SSOP         | DL      | 56   | 1000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |
| SN74GTLPH16612GR  | ACTIVE | TSSOP        | DGG     | 56   | 2000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | GTLPH16612        | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

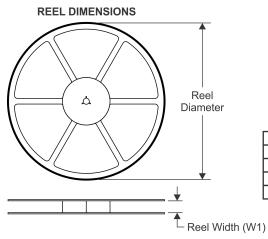
<sup>(4)</sup> Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.



www.ti.com

11-Apr-2013

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

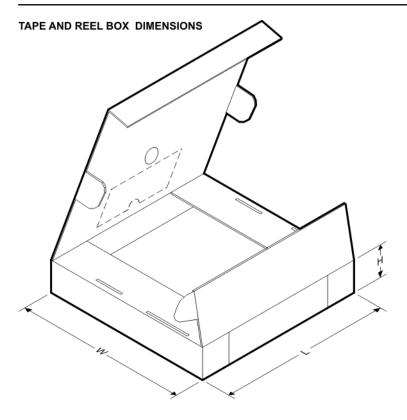
### TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



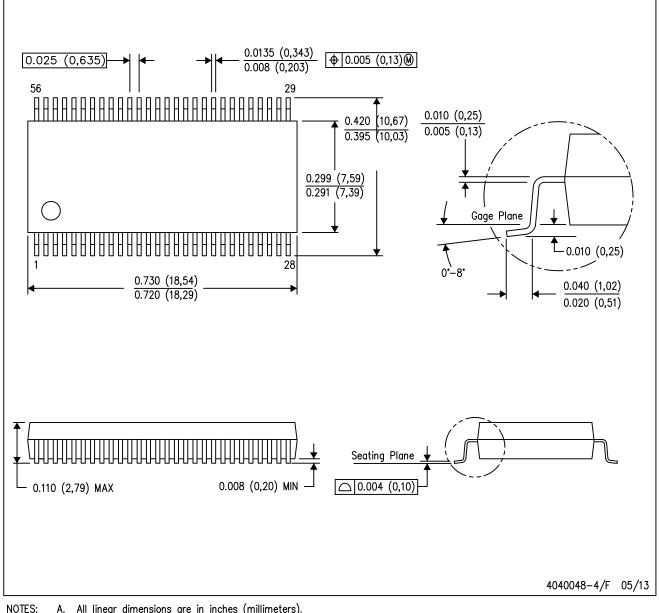

| *All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74GTLPH16612DLR           | SSOP            | DL                 | 56 | 1000 | 330.0                    | 32.4                     | 11.35      | 18.67      | 3.1        | 16.0       | 32.0      | Q1               |
| SN74GTLPH16612GR            | TSSOP           | DGG                | 56 | 2000 | 330.0                    | 24.4                     | 8.6        | 15.6       | 1.8        | 12.0       | 24.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

26-Jan-2013




\*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74GTLPH16612DLR | SSOP         | DL              | 56   | 1000 | 367.0       | 367.0      | 55.0        |
| SN74GTLPH16612GR  | TSSOP        | DGG             | 56   | 2000 | 367.0       | 367.0      | 45.0        |

DL (R-PDSO-G56)

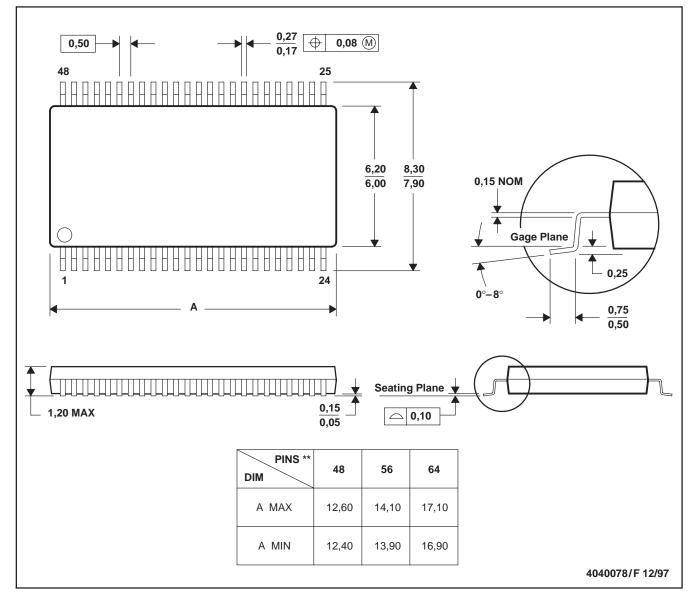
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
  - This drawing is subject to change without notice. В.
  - Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). C.
  - D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.




## **MECHANICAL DATA**

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

### DGG (R-PDSO-G\*\*)

### PLASTIC SMALL-OUTLINE PACKAGE

**48 PINS SHOWN** 



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                                 | Applications                  |                                   |  |  |  |
|------------------------------|---------------------------------|-------------------------------|-----------------------------------|--|--|--|
| Audio                        | www.ti.com/audio                | Automotive and Transportation | www.ti.com/automotive             |  |  |  |
| Amplifiers                   | amplifier.ti.com                | Communications and Telecom    | www.ti.com/communications         |  |  |  |
| Data Converters              | dataconverter.ti.com            | Computers and Peripherals     | www.ti.com/computers              |  |  |  |
| DLP® Products                | www.dlp.com                     | Consumer Electronics          | www.ti.com/consumer-apps          |  |  |  |
| DSP                          | dsp.ti.com                      | Energy and Lighting           | www.ti.com/energy                 |  |  |  |
| Clocks and Timers            | www.ti.com/clocks               | Industrial                    | www.ti.com/industrial             |  |  |  |
| Interface                    | interface.ti.com                | Medical                       | www.ti.com/medical                |  |  |  |
| Logic                        | logic.ti.com                    | Security                      | www.ti.com/security               |  |  |  |
| Power Mgmt                   | power.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |  |  |  |
| Microcontrollers             | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |  |  |  |
| RFID                         | www.ti-rfid.com                 |                               |                                   |  |  |  |
| OMAP Applications Processors | www.ti.com/omap                 | TI E2E Community              | e2e.ti.com                        |  |  |  |
| Wireless Connectivity        | www.ti.com/wirelessconnectivity |                               |                                   |  |  |  |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated