

3.3V CMOS 32-BIT BUFFER/ DRIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH32244

FEATURES:

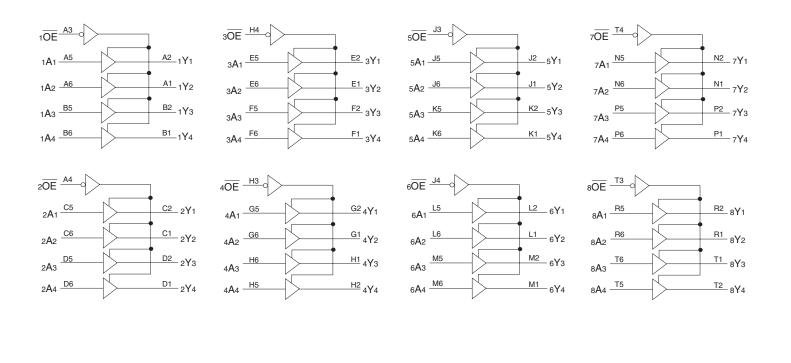
- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ± 0.2V
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in 96-ball LFBGA package

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Suitable for Heavy Loads

APPLICATIONS:

- · 3.3V high speed systems
- · 3.3V and lower voltage computing systems


DESCRIPTION:

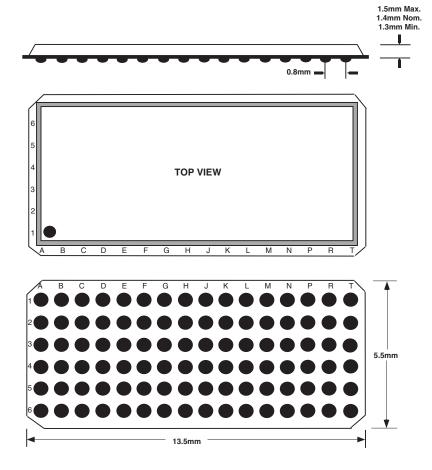
This 32-bit buffer/driver is built using advanced dual metal CMOS technology. This high-speed, low power device offers bus/backplane interface capability with improved packing density. The device has a flow-through organization for simplifying board layout. The three-state controls operate this device in a Quad-Nibble, Dual-Byte or single 16-bit word mode. All inputs are designed with hysteresis for improved noise margin.

The ALVCH32244 has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The ALVCH32244 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.


INDUSTRIAL TEMPERATURE RANGE

AUGUST 2015

												1				
6	1 A 2	1 A 4	2 A 2	2 A 4	3 A 2	3 A 4	4 A 2	4 A 3	5 A 2	5 A 4	6A2	6 A 4	7 A 2	7 A 4	8 A 2	8A3
5	1 A 1	1 A 3	2 A 1	2 A 3	3A1	зАз	4 A 1	4 A 4	5 A 1	5A3	6 A 1	6 A 3	7A1	7 A 3	8A1	8 A 4
4	20E	GND	Vcc	GND	GND	Vcc	GND	зŌЕ	6ŌĒ	GND	Vcc	GND	GND	Vcc	GND	70E
3	10E	GND	Vcc	GND	GND	Vcc	GND	4OE	5 <mark>0E</mark>	GND	Vcc	GND	GND	Vcc	GND	80E
2	1Y1	1Y3	2Y1	2Y3	3Y1	3Y3	4Y1	4Y4	5Y1	5Y3	6Y1	6Y3	7Y1	7 Y 3	8Y1	8Y4
1	1Y2	1Y4	2Y2	2Y4	3Y2	3 Y 4	4Y2	4Y3	5 Y 2	5Y4	6Y2	6Y4	7¥2	7Y4	8Y2	8Y3
	A	В	С	D	E	F	G	Н	J	ĸ	L	М	N	Р	R	Т

LFBGA TOPVIEW

96 BALL LFBGA PACKAGE ATTRIBUTES

IDT74ALVCH32244 3.3V CMOS 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
Ік	Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

PIN DESCRIPTION

Pin Names	Vames Description	
xOE 3-State Output Enable Inputs (Active LOW)		
хАх	Data Inputs ⁽¹⁾	
хҮх	3-State Outputs	

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	рF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (EACH 4-BIT BUFFER)(1)

Inp	outs	Outputs
xOE	хАх	хҮх
L	Н	Н
L	L	L
Н	Х	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

INDUSTRIALTEMPERATURERANGE

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40 °C to +85 °C

Symbol	Parameter	Test Co	nditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	-	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	-	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	-	±5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	-	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	±10	μA
Iozl	(3-State Output pins)		Vo = GND	_	-	±10	
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V			100	_	mV
ІССL ІССН ІССZ	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc		-	0.1	40	μA
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other i	nputs at Vcc or GND	-	-	750	μA

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions			Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	- 75	_	—	μA
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	—	μA
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	Vi = 0 to 3.6V	_	_	±500	μA
Ibhlo							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	Min.	Max.	Unit	
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = – 0.1mA	Vcc-0.2	—	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		VCC = 3V]	2.4	_	
		VCC = 3V	Iон = – 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	Iol = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			IOL = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		VCC = 3V	Iol = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40° C to $+85^{\circ}$ C.

OPERATING CHARACTERISTICS, TA = 25°C

			$Vcc = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance per Driver Outputs enabled	CL = 0pF, f = 10Mhz	32	38	pF
Cpd	Power Dissipation Capacitance per Driver Outputs disabled		8	10	

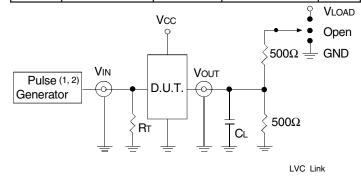
SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc = 2.	5V ± 0.2V	Vcc =	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tPLH .	Propagation Delay	1	3.7	_	3.6	1	3	ns
t PHL	xAx to xYx							
tрzн	Output Enable Time	1	5.7	_	5.4	1	4.4	ns
tPZL	xOE to xYx							
t PHZ	Output Disable Time	1	5.2	_	4.6	1	4.1	ns
tPLZ	xOE to xYx							
tsk(0)	Output Skew ⁽²⁾	—	—	—	-	—	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.

2 Skew between any two outputs of the same package and switching in the same direction.


IDT74ALVCH32244 3.3V CMOS 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS

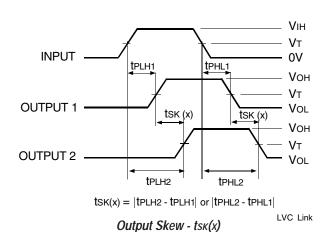
TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc / 2	V
Vlz	300	300	150	mV
Vhz	300	300	150	mV
Cl	50	50	30	pF

Test Circuit for All Outputs

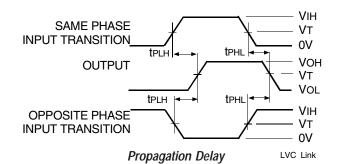
DEFINITIONS:

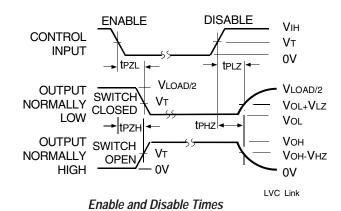
CL = Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

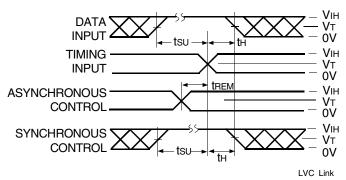
NOTES:

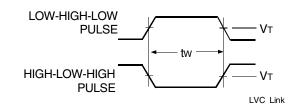
1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2.5ns; tr \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.


SWITCH POSITION


	-
Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

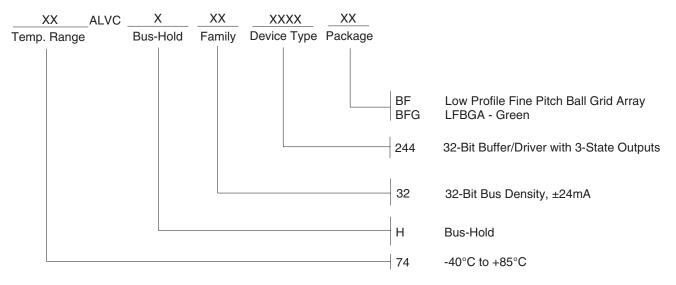
NOTES:


- For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs. 1.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank. 2



NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>