8M-BIT ZEROSB ${ }^{\text {TM }}$ SRAM PIPELINED OPERATION

Description

The $\mu \mathrm{PD} 4381162$ is a 524,288 -word by 16 -bit, the $\mu \mathrm{PD} 4381182$ is a 524,288 -word by 18 -bit, the $\mu \mathrm{PD} 4381322$ is a 262,144 -word by 32 -bit and the μ PD 4381362 is a 262,144 -word by 36 -bit ZEROSB static RAM fabricated with advanced CMOS technology using N-channel four-transistor memory cell.
The μ PD4381162, μ PD4381182, μ PD4381322 and μ PD4381362 are optimized to eliminate dead cycles for read to write, or write to read transitions. These ZEROSB static RAMs integrate unique synchronous peripheral circuitry, 2-bit burst counter and output buffer as well as SRAM core. All input registers are controlled by a positive edge of the single clock input (CLK).
The μ PD4381162, μ PD4381182, μ PD4381322 and μ PD4381362 are suitable for applications which require synchronous operation, high speed, low voltage, high density and wide bit configuration, such as buffer memory.
ZZ has to be set LOW at the normal operation. When ZZ is set HIGH, the SRAM enters Power Down State ("Sleep"). In the "Sleep" state, the SRAM internal state is preserved. When $Z Z$ is set LOW again, the SRAM resumes normal operation.
The μ PD4381162, μ PD4381182, μ PD4381322 and μ PD4381362 are packaged in 100-pin PLASTIC LQFP with a 1.4 mm package thickness for high density and low capacitive loading.

Features

- Single 3.3 V power supply
- Synchronous operation
- 100 percent bus utilization
- Internally self-timed write control
- Burst read / write : Interleaved burst and linear burst sequence
- Fully registered inputs and outputs for pipelined operation
- All registers triggered off positive clock edge
- 3.3 V LVTTL Compatible : All inputs and outputs
- Fast clock access time : $3.8 \mathrm{~ns}(150 \mathrm{MHz}), 4.2 \mathrm{~ns}(133 \mathrm{MHz}), 5.0 \mathrm{~ns}(100 \mathrm{MHz})$
- Asynchronous output enable : /G
- Burst sequence selectable : MODE
- Sleep mode : ZZ (ZZ = Open or Low : Normal operation)
- Separate byte write enable : /BW1 - /BW4 (μ PD4381322, μ PD4381362), /BW1 - /BW2 (μ PD4381162, μ PD4381182)
- Three chip enables for easy depth expansion
- Common I/O using three state outputs

Ordering Information

Part number	Access Time ns	Clock Frequency MHz	Core Supply Voltage V	I/O Interface	Package	Note
μ PD4381162GF-A75	4.2	133	3.3 ± 0.165	3.3 V LVTTL	100-pin PLASTIC LQFP (14×20)	1
$\mu \mathrm{PD} 4381162 \mathrm{GF}-\mathrm{A} 10$	5.0	100				
$\mu \mathrm{PD} 4381182 \mathrm{GF}-\mathrm{A} 75$	4.2	133				
μ PD4381182GF-A10	5.0	100				
$\mu \mathrm{PD} 4381322 \mathrm{GF}-\mathrm{A67}$	3.8	150				2
$\mu \mathrm{PD} 4381322 \mathrm{GF}-\mathrm{A} 75$	4.2	133				
$\mu \mathrm{PD} 4381362 \mathrm{GF}-\mathrm{A} 67$	3.8	150				
μ PD4381362GF-A75	4.2	133				

Notes 1. Grade A75 and A10 are available in the μ PD4381162GF and μ PD4381182GF.
2. Grade A67 and A75 are available in the μ PD4381322GF and μ PD4381362GF.

Pin Configurations (Marking Side)
$/ X X x$ indicates active low signal.

100-pin PLASTIC LQFP (14×20)

[μ PD4381162GF, μ PD4381182GF]

Remark Refer to Package Drawing for 1-pin index mark.

Pin Identifications

[μ PD4381162GF, μ PD4381182GF]

Symbol	Pin No.	Description
A0-A18	$\begin{aligned} & 37,36,35,34,33,32,100,99,82,81, \\ & 44,45,46,47,48,49,50,83,80 \end{aligned}$	Synchronous Address Input
I/O1-I/O16	$\begin{aligned} & 58,59,62,63,68,69,72,73,8,9,12,13 \\ & 18,19,22,23 \end{aligned}$	Synchronous Data In, Synchronous / Asynchronous Data Out
I/OP1, NC ${ }^{\text {Note }}$	74	Synchronous Data In (Parity),
I/OP2, NC ${ }^{\text {Note }}$	24	Synchronous / Asynchronous Data Out (Parity)
ADV	85	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	98, 97, 92	Synchronous Chip Enable Input
/WE	88	Synchronous Write Enable Input
/BW1, /BW2	93, 94	Synchronous Byte Write Enable Input
/G	86	Asynchronous Output Enable Input
CLK	89	Clock Input
/CKE	87	Synchronous Clock Enable Input
MODE	31	Asynchronous Burst Sequence Select Input Have to tied to Vdd or Vss during normal operation
ZZ	64	Asynchronous Power Down State Input
VdD	14, 15, 16, 41, 65, 66, 91	Power Supply
Vss	17, 40, 67, 90	Ground
VdoQ	4, 11, 20, 27, 54, 61, 70, 77	Output Buffer Power Supply
VssQ	5, 10, 21, 26, 55, 60, 71, 76	Output Buffer Ground
NC	$\begin{aligned} & 1,2,3,6,7,25,28,29,30,38,39,42,43, \\ & 51,52,53,56,57,75,78,79,84,95,96 \end{aligned}$	No Connection

Note NC (No Connection) is used in the μ PD4381162GF.
I/OP1 - I/OP2 are used in the μ PD4381182GF.

Remark Refer to Package Drawing for 1-pin index mark.
[μ PD4381322GF, μ PD4381362GF]

Symbol	Pin No.	Description
A0-A17	$\begin{aligned} & 37,36,35,34,33,32,100,99,82,81,44, \\ & 45,46,47,48,49,50,83 \end{aligned}$	Synchronous Address Input
I/O1-I/O32	$\begin{aligned} & 52,53,56,57,58,59,62,63,68,69,72 \\ & 73,74,75,78,79,2,3,6,7,8,9,12,13, \\ & 18,19,22,23,24,25,28,29 \end{aligned}$	Synchronous Data In, Synchronous / Asynchronous Data Out
I/OP1, NC ${ }^{\text {Note }}$	51	Synchronous Data In (Parity), Synchronous / Asynchronous Data Out (Parity)
I/OP2, NC ${ }^{\text {Note }}$	80	
I/OP3, NC ${ }^{\text {Note }}$	1	
I/OP4, NC ${ }^{\text {Note }}$	30	
ADV	85	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	98, 97, 92	Synchronous Chip Enable Input
/WE	88	Synchronous Write Enable Input
/BW1 - /BW4	93, 94, 95, 96	Synchronous Byte Write Enable Input
/G	86	Asynchronous Output Enable Input
CLK	89	Clock Input
/CKE	87	Synchronous Clock Enable Input
MODE	31	Asynchronous Burst Sequence Select Input Have to tied to Vdd or Vss during normal operation
ZZ	64	Asynchronous Power Down State Input
VDD	14, 15, 16, 41, 65, 66, 91	Power Supply
Vss	17, 40, 67, 90	Ground
VdoQ	4, 11, 20, 27, 54, 61, 70, 77	Output Buffer Power Supply
VssQ	5, 10, 21, 26, 55, 60, 71, 76	Output Buffer Ground
NC	38, 39, 42, 43, 84	No Connection

Note NC (No Connection) is used in the μ PD4381322GF.
I/OP1 - I/OP4 are used in the μ PD4381362GF.

Block Diagrams

[μ PD4381162, μ PD4381182]

Burst Sequence

[μ PD4381162, μ PD4381182]
Interleaved Burst Sequence Table (MODE = Open or Vdd)

External Address	A18-A2, A1, A0
1st Burst Address	A18-A2, A1, /A0
2nd Burst Address	A18-A2, /A1, A0
3rd Burst Address	A18-A2, /A1, /A0

Linear Burst Sequence Table (MODE = Vss)

External Address	A18-A2, 0, 0	A18-A2, 0, 1	A18-A2, 1, 0	A18-A2, 1, 1
1st Burst Address	A18-A2, 0, 1	A18-A2, 1, 0	A18-A2, 1, 1	A18-A2, 0, 0
2nd Burst Address	A18-A2, 1, 0	A18-A2, 1, 1	A18-A2, 0, 0	A18-A2, 0, 1
3rd Burst Address	A18-A2, 1, 1	A18-A2, 0, 0	A18-A2, 0, 1	A18-A2, 1, 0

[μ PD4381322, μ PD4381362]

[μ PD4381322, μ PD4381362]
Interleaved Burst Sequence Table (MODE = Open or VDD)

External Address	A17-A2, A1, A0
1st Burst Address	A17-A2, A1, /A0
2nd Burst Address	A17-A2, /A1, A0
3rd Burst Address	A17-A2, /A1, /A0

Linear Burst Sequence Table (MODE = Vss)

External Address	A17-A2, 0, 0	A17-A2, 0, 1	A17-A2, 1, 0	A17-A2, 1, 1
1st Burst Address	A17-A2, 0, 1	A17-A2, 1, 0	A17-A2, 1, 1	A17-A2, 0, 0
2nd Burst Address	A17-A2, 1, 0	A17-A2, 1, 1	A17-A2, 0, 0	A17-A2, 0, 1
3rd Burst Address	A17-A2, 1, 1	A17-A2, 0, 0	A17-A2, 0, 1	A17-A2, 1, 0

State Diagram

Command	Operation
DS	Deselect
Read	New Read
Write	New Write
Burst	Burst Read, Burst Write or Continue Deselect

Remarks 1. States change on the rising edge of the clock.
2. A Stall of Ignore Clock Edge cycle is not shown in the above diagram. This is because /CKE HIGH only blocks the clock (CLK) input and does not change the state of the device.

Asynchronous Truth Table

Operation	/G	I/O
Read Cycle	L	Data-Out
Read Cycle	H	Hi-Z
Write Cycle	\times	Hi-Z, Data-In
Deselected	\times	Hi-Z

Remark \times : don't care

Synchronous Truth Table

Operation	/CE	CE2	/CE2	ADV	/WE	$/ \mathrm{BWs}$	$/ \mathrm{CKE}$	CLK	I / O	Address	Note
Deselected	H	\times	\times	L	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Deselected	\times	L	\times	L	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Deselected	\times	\times	H	L	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Continue Deselected	\times	\times	\times	H	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Read Cycle / Begin Burst	L	H	L	L	H	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-Out	External	
Read Cycle / Continue Burst	\times	\times	\times	H	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-Out	Next	
Write Cycle / Begin Burst	L	H	L	L	L	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-In	External	
Write Cycle / Continue Burst	\times	\times	\times	H	\times	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-In	Next	
Write Cycle / Write Abort	L	H	L	L	L	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	External	
Write Cycle / Write Abort	\times	\times	\times	H	\times	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	Next	
Stall / Ignore Clock Edge	\times	\times	\times	\times	\times	\times	H	$\mathrm{L} \rightarrow \mathrm{H}$	-	Current	2

Notes 1. Deselect status is held until new "Begin Burst" entry.
2. If an Ignore Clock Edge command occurs during a read operation, the I/O bus will remain active (Low-Z). If it occurs during a write cycle, the bus will remain $\mathrm{Hi}-\mathrm{Z}$. No write operation will be performed during the Ignore Clock Edge cycle.

Remarks 1. \times : don't care
2. $/ B W s=L$ means any one or more byte write enables (/BW $1, / B W 2$, /BW3 or /BW4) are LOW. $/ \mathrm{BWs}=\mathrm{H}$ means all byte write enables (/BW1, /BW2, /BW3 or /BW4) are HIGH.

Partial Truth Table for Write Enables

[μ PD4381162, μ PD4381182]

Operation	/WE	/BW1	/BW2
Read Cycle	H	\times	\times
Write Cycle / Byte 1 (I/O [1:8], I/OP1)	L	L	H
Write Cycle / Byte 2 (I/O [9:16], I/OP2)	L	H	L
Write Cycle / All Bytes	L	L	L
Write Abort / NOP	L	H	H

Remark \times : don't care
[μ PD4381322, μ PD4381362]

Operation	/WE	/BW1	/BW2	/BW3	/BW4
Read Cycle	H	\times	\times	\times	\times
Write Cycle / Byte 1 (I/O [1:8], I/OP1)	L	L	H	H	H
Write Cycle / Byte 2 (I/O [9:16], I/OP2)	L	H	L	H	H
Write Cycle / Byte 3 (I/O [17:24], I/OP3)	L	H	H	L	H
Write Cycle / Byte 4 (I/O [25:32], I/OP4)	L	H	H	H	L
Write Cycle / All Bytes	L	L	L	L	L
Write Abort / NOP	L	H	H	H	H

Remark \times : don't care

ZZ (Sleep) Truth Table

ZZ	Chip Status
$\leq 0.2 \mathrm{~V}$	Active
Open	Active
$\geq \mathrm{VDD}_{\mathrm{DD}}-0.2 \mathrm{~V}$	Sleep

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	VdD		-0.5		+4.0	V
Output supply voltage	VdoQ		-0.5		VdD	V
Input voltage	Vin		$-0.5^{\text {Note }}$		$V_{D D}+0.5$	V
Input / Output voltage	Vio		$-0.5^{\text {Note }}$		VdDQ + 0.5	V
Operating ambient temperature	TA		0		70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55		+125	${ }^{\circ} \mathrm{C}$

Note -2.0 V (MIN.) (Pulse width : 2 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V_{DD}		3.135	3.3	3.465	V
Output supply voltage	V_{DD}		3.135	3.3	3.465	V
High level input voltage	V_{H}		2.0		$\mathrm{~V}_{\mathrm{DD}} \mathrm{Q}+0.3$	V
Low level input voltage	V_{IL}		$-0.3^{\text {Note }}$		+0.8	V

Note -0.8 V (MIN.) (Pulse width : 2 ns)

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VdD}=3.3 \pm 0.165 \mathrm{~V}$)

Parameter	Symbol	Test condition		MIN.	TYP.	MAX.	Unit
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}\left(\right.$ except ZZ , MODE) $=0 \mathrm{~V}$ to $\mathrm{V}_{\text {d }}$		-2		+2	$\mu \mathrm{A}$
I/O leakage current	ILo	$\mathrm{V}_{I / O}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} \mathrm{Q}$, Outputs are disabled.		-2		+2	$\mu \mathrm{A}$
Operating supply current	IdD	Device selected, Cycle = MAX.$\begin{aligned} & V_{\text {IN }} \leq V_{\text {IL }} \text { or } V_{\text {IN }} \geq V_{\text {IH }}, \\ & \mathrm{IIIO}^{2}=0 \mathrm{~mA} \end{aligned}$	-A67			440	mA
			-A75			400	
			-A10			300	
Standby supply current	IsB	Device deselected, Cycle $=0 \mathrm{MHz}$, $\mathrm{V}_{\text {In }} \leq \mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}}$, All inputs are static.				30	mA
	IsB1	Device deselected, Cycle $=0 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{I}} \mathrm{O} \leq 0.2 \mathrm{~V}$, All inputs are static.				10	
	IsB2	Device deselected, Cycle = MAX.$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {IH }}$				180	
Power down supply current	Isbzz	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \mathrm{~V}_{\text {IO }} \leq \mathrm{V}_{\text {dD }} \mathrm{C}+0.2 \mathrm{~V}$				10	mA
High level output voltage	Vон	I н $=-4.0 \mathrm{~mA}$		2.4			V
Low level output voltage	Vol	$\mathrm{loL}=+8.0 \mathrm{~mA}$				0.4	V

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.
Input capacitance	C_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			5.0
Input / Output capacitance	$\mathrm{C}_{/ / \mathrm{O}}$	$\mathrm{V}_{/ / \mathrm{O}}=0 \mathrm{~V}$			pF
Clock input capacitance	$\mathrm{C}_{\mathrm{clk}}$	$\mathrm{V}_{\mathrm{clk}}=0 \mathrm{~V}$		7.0	pF

Remark These parameters are not 100% tested.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V} D=3.3 \pm 0.165 \mathrm{~V}$)
AC Test Conditions

3.3 V LVTTL Interface

Input waveform (Rise / Fall time ≤ 3.0 ns)

Output waveform

Output load condition

```
Cl: 30 pF
    5 pF (TKHQX1, TKHQX2, TGLQX, TGHQZ, TKHQZ)
```

Figure1 External load at test

Remark C includes capacitances of the probe and jig, and stray capacitances.

Read and Write Cycle

Parameter		Symbol		$\begin{gathered} -\mathrm{A} 67 \\ (150 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} \text {-A75 } \\ (133 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} \text {-A10 } \\ (100 \mathrm{MHz}) \end{gathered}$		Unit	Note
		Standard	Alias	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Cycle time		TKHKH	TCYC	6.67	-	7.5	-	10	-	ns	
Clock access time		TKHQV	TCD	-	3.8	-	4.2	-	5	ns	
Output enable access time		TGLQV	TOE	-	3.8	-	4.2	-	5	ns	
Clock high to output active		TKHQX1	TDC1	1.5	-	1.5	-	1.5	-	ns	1, 2
Clock high to output change		TKHQX2	TDC2	1.5	-	1.5	-	1.5	-	ns	
Output enable to output active		TGLQX	TOLZ	0	-	0	-	0	-	ns	1
Output disable to output Hi-Z		TGHQZ	TOHZ	0	3.5	0	3.5	0	3.5	ns	1
Clock high to output Hi-Z		TKHQZ	TCZ	1.5	4	1.5	4	1.5	4	ns	1,2
Clock high pulse width		TKHKL	TCH	2	-	2	-	2.5	-	ns	
Clock low pulse width		TKLKH	TCL	2	-	2	-	2.5	-	ns	
Setup times	Address	TAVKH	TAS	2	-	2	-	2	-	ns	
	Data in	TDVKH	TDS								
	Write enable	TWVKH	TWS								
	Address advance	TADVVKH	-								
	Chip enable	TEVKH	-								
Hold times	Address	TKHAX	TAH	0.5	-	0.5	-	0.5	-	ns	
	Data in	TKHDX	TDH								
	Write enable	TKHWX	TWH								
	Address advance	TKHADVX	-								
	Chip enable	TKHEX	-								
Power down entry setup		TZZES	TZZES	5	-	5	-	5	-	ns	
Power down entry hold		TZZEH	TZZEH	1	-	1	-	1	-	ns	
Power down recovery setup		TZZRS	TZZRS	6	-	6	-	6	-	ns	
Power down recovery hold		TZZRH	TZZRH	0	-	0	-	0	-	ns	

Notes 1. Transition is measured $\pm 200 \mathrm{mV}$ from steady state.
2. To avoid bus contention, the output buffers are designed such that TKHQZ (device turn-off) is faster than TKHQX1 (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because TKHQX1 is a min. parameter that is worse case at totally different conditions $\left(0^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}\right.$ max.) than TKHQZ, which is a max. parameter (worse case at $70^{\circ} \mathrm{C}, V_{d d} \min$.).

READ / WRITE CYCLE

Notes 1. /CEs refers to /CE, CE2 and /CE2. When /CEs is LOW, /CE and /CE2 are LOW and CE2 is HIGH. When /CEs is HIGH, /CE and /CE2 are HIGH and CE2 is LOW.
2. /BWs refers to /BW1, /BW2, /BW3 and /BW4. When /BWs is LOW, any one or more byte write enables (/BW1, /BW2, /BW3 or /BW4) are LOW.

NOP, STALL AND DESELECT CYCLE

POWER DOWN (ZZ) CYCLE

Note /WE or /CEs must be held HIGH at CLK rising edge (clock edge No. 2 and No. 3 in this figure) prior to power down state entry.

Package Drawing

100-PIN PLASTIC LQFP (14x20)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	22.0 ± 0.2
B	20.0 ± 0.2
C	14.0 ± 0.2
D	16.0 ± 0.2
F	0.825
G	0.575
H	$0.32_{-0.07}^{+0.08}$
I	0.13
J	0.65 (T.P.)
K	1.0 ± 0.2
L	0.5 ± 0.2
M	$0.17_{-0.05}^{+0.06}$
N	0.10
P	1.4
Q	0.125 ± 0.075
R	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
S	1.7 MAX.
	S100GF-65-8ET-1

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of the $\mu \mathrm{PD} 4381162,4381182,4381322$ and 4381362.

Types of Surface Mount Devices

```
\muPD4381162GF: 100-pin PLASTIC LQFP (14 × 20)
\muPD4381182GF: 100-pin PLASTIC LQFP (14 × 20)
\muPD4381322GF: 100-pin PLASTIC LQFP (14 × 20)
\muPD4381362GF: 100-pin PLASTIC LQFP (14 > 20)
```

[MEMO]
[MEMO]

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I / O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of April, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

