GENERAL DESCRIPTION

The NV021 is a Fibre Channel Clock Generator and a member of the family of high performance devices from IDT. The NV021 can synthesize 98.304MHz, 100MHz, and 106.25MHz from a 24.576MHz, 25MHz, and 26.5625MHz crystals respectively. The NV021 is packaged in a small 8-pin SOIC, making it ideal for use in systems with limited board space.

FEATURES

- 1 differential 3.3V LVPECL output
- Crystal frequency range: 23.33MHz 28.33MHz
- Output frequencies: 98.304MHz, 100MHz. 106.25MHz
- VCO range: 560MHz 680MHz
- Low RMS phase jitter
- · 3.3V operating supply
- Available in RoHS/Lead-Free compliant package
- -30°C to 85°C ambient operating temperature

FREQUENCY TABLE

Crystal (MHz)	Output Frequency (MHz)
24.576	98.304
25	100
26.5625	106.25

BLOCK DIAGRAM

PIN ASSIGNMENT

8-Lead SOIC
3.90mm x 4.90mm x 1.37mm
package body
M Package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1	V _{CCA}	Power		Analog supply pin.
2	V _{EE}	Power		Negative supply pin.
3, 4	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	nc	Unused		No connect.
6, 7	nQ0, Q0	Output		Differential clock outputs. LVPECL interface levels.
8	V _{cc}	Power		Core supply pin.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC} 4.6V

Inputs, V_1 -0.5V to V_{CC} + 0.5V

Outputs, $I_{\rm O}$

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, θ_{IA}

8 Lead SOIC
8 Lead TSSOP
112.7°C/W (0 Ifpm)
101.7°C/W (0 mps)
Storage Temperature, T_{STG}
-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, Ta = -30°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Power Supply Current				90	mA

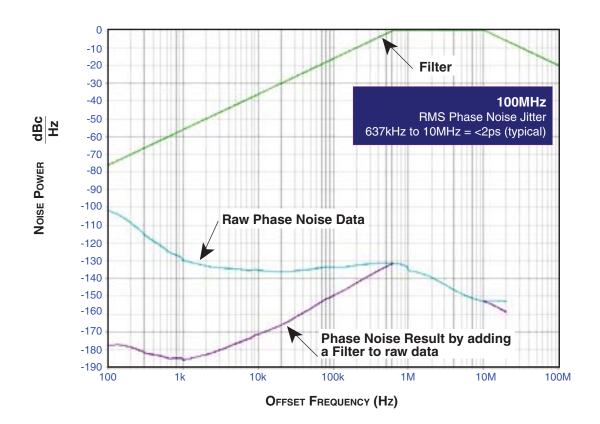
Table 3B. LVPECL DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, Ta = -30°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cc} - 1.4		V _{cc} - 0.9	٧
V _{OL}	Output Low Voltage; NOTE 1		V _{cc} - 2.0		V _{cc} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 Ω to V $_{\text{cc}}$ - 2V.

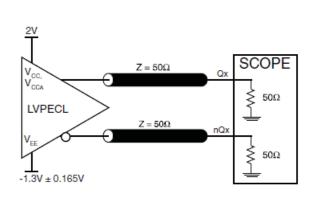
TABLE 4. CRYSTAL CHARACTERISTICS

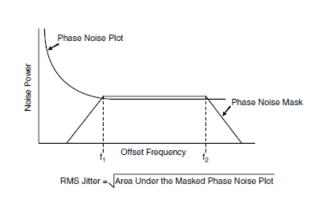
Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		23.33		28.33	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

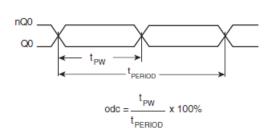

Table 5. AC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, Ta = -30°C to 85°C

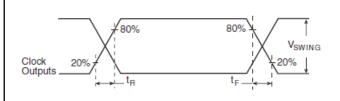
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
F _{out}	Output Frequency		93.33		113.33	MHz
		98.304MHz; Integration Range: 12kHz - 20MHz		<1		ps
<i>t</i> jit(Ø)	RMS Phase Jitter (Random); NOTE 1	100MHz; Integration Range: 637kHz - 10MHz		<1		ps
		106.25MHz; Integration Range: 637kHz - 5MHz		<1		ps
t_R/t_F	Output Rise/Fall Time	20% to 80%	300		600	ps
odc	Output Duty Cycle		48		52	%

NOTE 1: Please refer to the Phase Noise Plot.




Typical Phase Noise at 100MHz


PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The NV021 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu\text{F}$ and a $.01\mu\text{F}$ bypass capacitor should be connected to each V_{CCA} pin.

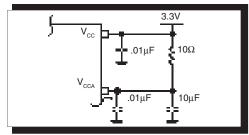
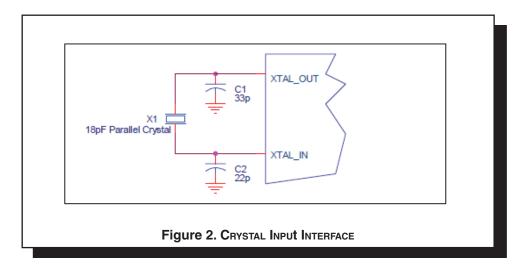



FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The NV021 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CRYSTAL INPUT:

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1k Ω resistor can be tied from XTAL_IN to ground.

OUTPUTS:

LVPECL OUTPUT

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

TERMINATION FOR 3.3V LVPECL OUTPUT

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to

drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

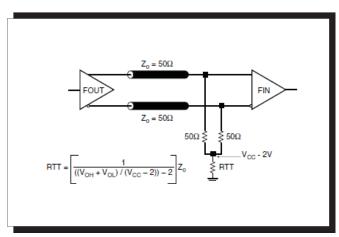


FIGURE 3A. LVPECL OUTPUT TERMINATION

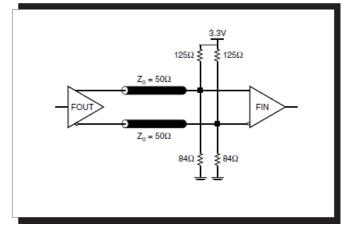


FIGURE 3B. LVPECL OUTPUT TERMINATION

Power Considerations

This section provides information on power dissipation and junction temperature for the NV021. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the NV021 is the sum of the core power plus the power dissipated in the load(s).

The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC, MAX} * I_{EE MAX} = 3.465V * 90mA = 311.85mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power $_{MAX}$ (3.465V, with all outputs switching) = 311.85mW + 30mW = 341.85mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS[™] devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + TA

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 6A below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: 85°C + 0.342W * 103.3°C/W = 120.3°C. This is below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

TABLE 6A. THERMAL RESISTANCE θ_{JA} FOR 8-PIN SOIC, FORCED CONVECTION

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	153.3°C/W	128.5°C/W	115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	112.7°C/W	103.3°C/W	97.1°C/W

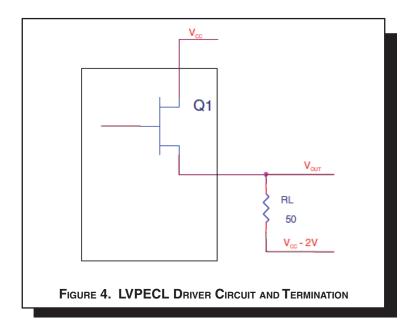
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Table 6B. Thermal Resistance θ _{Ja} for 8-pin TSSOP, Forced Convection

θ_{JA} by Velocity (Meters per Second)

Λ

	U		2.5
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5°C/W	89.8°C/W


2 5

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 4.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{cc} - 2V.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.9V$$

$$(V_{CCO\ MAX} - V_{OH\ MAX}) = 0.9V$$

• For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.7V$

$$(V_{CCO\ MAX} - V_{OL\ MAX}) = 1.7V$$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

RELIABILITY INFORMATION

Table 7A. θ_{JA} vs. Air Flow Table for 8 Lead SOIC

θ_{JA} by Velocity (Linear Feet per Minute)

O200500Single-Layer PCB, JEDEC Standard Test Boards153.3°C/W128.5°C/W115.5°C/WMulti-Layer PCB, JEDEC Standard Test Boards112.7°C/W103.3°C/W97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Table 7B. $\theta_{\text{JA}} \text{vs. Air Flow Table for 8 Lead TSSOP}$

θ_{JA} by Velocity (Meters per Second)

 0
 1
 2.5

 Multi-Layer PCB, JEDEC Standard Test Boards
 101.7°C/W
 90.5°C/W
 89.8°C/W

TRANSISTOR COUNT

The transistor count for NV021 is: 1839

PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

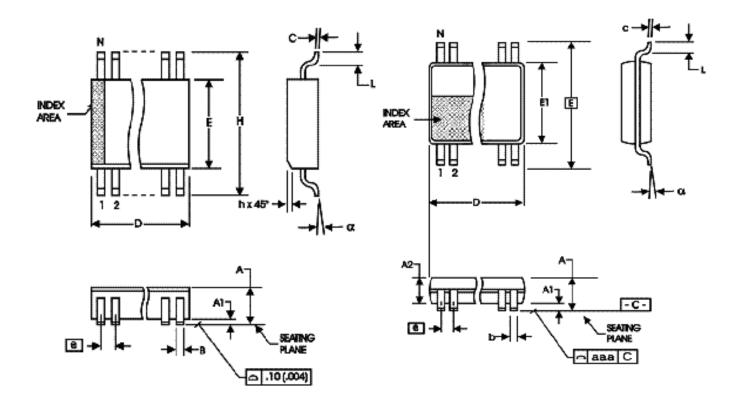


TABLE 8A. PACKAGE DIMENSIONS

OVMPOL	Millin	neters	
SYMBOL	MINIMUN	MAXIMUM	
N	8		
А	1.35	1.75	
A1	0.10	0.25	
В	0.33	0.51	
С	0.19	0.25	
D	4.80	5.00	
E	3.80	4.00	
е	1.27 [BASIC	
Н	5.80	6.20	
h	0.25	0.50	
L	0.40	1.27	
α	0°	8°	

Reference Document: JEDEC Publication 95, MS-012

TABLE 8B. PACKAGE DIMENSIONS

CVMPOL	Millin	neters		
SYMBOL	Minimum	Maximum		
N	8			
A		1.20		
A1	0.05	0.15		
A2	0.80	1.05		
b	0.19	0.30		
С	0.09	0.20		
D	2.90	3.10		
E	6.40 E	BASIC		
E1	4.30	4.50		
е	0.65 BASIC			
L	0.45	0.75		
α	0°	8°		
aaa		0.10		

Reference Document: JEDEC Publication 95, MO-153

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
NV021AMLF	NV021AML	8 lead "Lead-Free" SOIC	tube	-30°C to 85°C
NV021AMLFT	NV021AML	8 lead "Lead-Free" SOIC	tape & reel	-30°C to 85°C

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
		1	Features section and Frequency Table - added 98.304MHz and 106.25MHz output frequencies, and added 24.576MHz and 26.5625MHz crystal frequencies.	
В	T4	3	Crystal Characteristics - added Drive Level.	7/26/05
	T5	3	AC Characteristics - added 98.304MHz and 106.25MHz to RMS Phase Jitter.	
		7	Added Recommendations for Unused Input and Output Pins.	
В	Т8	1 12	Updated datasheet format to IDT. Removed TSSOP package information. Table 8, Ordering Information - removed leaded and TSSOP devices.	4/2/14
	10	12	Removed reference to leaded package.	
В	Т8	12	Ordering Information - removed quantity from tape and reel. Deleted LF note below the table. Updated header and footer.	1/26/16

13

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/