

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

## **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.



April 1992 Revised May 2005

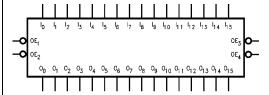
## 74ABT162244

# 16-Bit Buffer/Line Driver with 25 $\Omega$ Series Resistors in the Outputs

#### **General Description**

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual 3-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

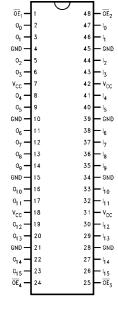
The  $25\Omega$  series resistors in the outputs reduce ringing and eliminate the need for external resistors.


#### **Features**

- Separate control logic for each nibble
- 16-bit version of the ABT2244
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability

### **Ordering Code:**

| Order Number    | Package Number | Package Description                                                                         |
|-----------------|----------------|---------------------------------------------------------------------------------------------|
| 74ABT162244CSSC | MS48A          | 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [RAIL]               |
| 74ABT162244CSSX | MS48A          | 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]      |
| 74ABT162244CMTD | MTD48          | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [RAIL]          |
| 74ABT162244MTDX | MTD48          | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL] |


### **Logic Symbol**



### **Pin Descriptions**

| Pin Names                       | Description                      |
|---------------------------------|----------------------------------|
| <del>OE</del> <sub>n</sub>      | Output Enable Input (Active LOW) |
| I <sub>0</sub> –I <sub>15</sub> | Inputs                           |
| O <sub>0</sub> -O <sub>15</sub> | Outputs                          |

## **Connection Diagram**

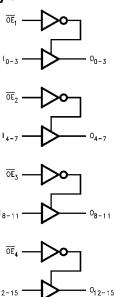


## **Truth Tables**

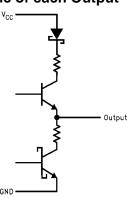
| Inj             | outs                           | Outputs                        |
|-----------------|--------------------------------|--------------------------------|
| OE <sub>1</sub> | I <sub>0</sub> -I <sub>3</sub> | O <sub>0</sub> -O <sub>3</sub> |
| L               | L                              | L                              |
| L               | Н                              | Н                              |
| Н               | X                              | Z                              |

| In  | outs                            | Outputs                         |
|-----|---------------------------------|---------------------------------|
| OE₃ | I <sub>8</sub> -I <sub>11</sub> | O <sub>8</sub> -O <sub>11</sub> |
| L   | L                               | L                               |
| L   | Н                               | Н                               |
| Н   | X                               | Z                               |

| In              | puts                           | Outputs                        |
|-----------------|--------------------------------|--------------------------------|
| OE <sub>2</sub> | I <sub>4</sub> –I <sub>7</sub> | O <sub>4</sub> -O <sub>7</sub> |
| L               | L                              | L                              |
| L               | Н                              | н                              |
| Н               | X                              | Z                              |


| In              | puts                             | Outputs                          |
|-----------------|----------------------------------|----------------------------------|
| OE <sub>4</sub> | I <sub>12</sub> -I <sub>15</sub> | O <sub>12</sub> -O <sub>15</sub> |
| L               | L                                | L                                |
| L               | Н                                | Н                                |
| н               | X                                | Z                                |

- L
  H = HIGH Voltage Level
  L = LOW Voltage Level
  X = Immaterial
  Z = High Impedance


### **Functional Description**

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

## **Logic Diagram**



## **Schematic of each Output**



### **Absolute Maximum Ratings**(Note 1)

-65°C to +150°C Storage Temperature -55°C to +125°C Ambient Temperature under Bias

Junction Temperature under Bias -55°C to +150°C -0.5V to +7.0V

V<sub>CC</sub> Pin Potential to Ground Pin

Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-Off State -0.5V to 5.5Vin the HIGH State -0.5V to  $V_{CC}$ 

Current Applied to Output

in LOW State (Max) twice the rated  $I_{OL}$  (mA) DC Latchup Source Current -500 mA

Over Voltage Latchup (I/O) 10V

### **Recommended Operating Conditions**

-40°C to +85°C Free Air Ambient Temperature Supply Voltage +4.5V to +5.5V

Minimum Input Edge Rate ( $\Delta V/\Delta t$ )

50 mV/ns Data Input 20 mV/ns Enable Input

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

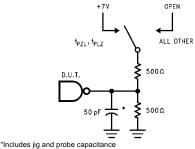
under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

## **DC Electrical Characteristics**

| Symbol           | Paramet                           | er              | Min  | Тур | Max  | Units | V <sub>CC</sub> | Conditions                                           |
|------------------|-----------------------------------|-----------------|------|-----|------|-------|-----------------|------------------------------------------------------|
| V <sub>IH</sub>  | Input HIGH Voltage                |                 | 2.0  |     |      | V     |                 | Recognized HIGH Signal                               |
| V <sub>IL</sub>  | Input LOW Voltage                 |                 |      |     | 0.8  | V     |                 | Recognized LOW Signal                                |
| V <sub>CD</sub>  | Input Clamp Diode Voltag          | е               |      |     | -1.2 | V     | Min             | I <sub>IN</sub> = -18 mA                             |
| V <sub>OH</sub>  | Output HIGH Voltage               |                 | 2.5  |     |      | V     | Min             | I <sub>OH</sub> = -3 mA                              |
|                  |                                   |                 | 2.0  |     |      | V     | Min             | I <sub>OH</sub> = -32 mA                             |
| V <sub>OL</sub>  | Output LOW Voltage                |                 |      |     | 8.0  | V     | Min             | I <sub>OL</sub> = 12 mA                              |
| I <sub>IH</sub>  | Input HIGH Current                |                 |      |     | 1    | μА    | Max             | V <sub>IN</sub> = 2.7V (Note 3)                      |
|                  |                                   |                 |      |     | 1    | μΛ    | IVIAX           | $V_{IN} = V_{CC}$                                    |
| I <sub>BVI</sub> | Input HIGH Current Break          | down Test       |      |     | 7    | μА    | Max             | V <sub>IN</sub> = 7.0V                               |
| I <sub>IL</sub>  | Input LOW Current                 |                 |      |     | -1   | μА    | Max             | V <sub>IN</sub> = 0.5V (Note 3)                      |
|                  |                                   |                 |      |     | -1   | μΑ    | IVIAX           | $V_{IN} = 0.0V$                                      |
| V <sub>ID</sub>  | Input Leakage Test                |                 | 4.75 |     |      | V     | 0.0             | $I_{ID} = 1.9 \mu A$                                 |
|                  |                                   |                 |      |     |      |       |                 | All Other Pins Grounded                              |
| I <sub>OZH</sub> | Output Leakage Current            |                 |      |     | 10   | μА    | 0 – 5.5V        | $V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$             |
| I <sub>OZL</sub> | Output Leakage Current            |                 |      |     | -10  | μА    | 0 – 5.5V        | $V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$             |
| los              | Output Short-Circuit Curre        | ent             | -100 |     | -275 | mA    | Max             | V <sub>OUT</sub> = 0.0V                              |
| I <sub>CEX</sub> | Output High Leakage Cur           | rent            |      |     | 50   | μА    | Max             | V <sub>OUT</sub> = V <sub>CC</sub>                   |
| I <sub>ZZ</sub>  | Bus Drainage Test                 |                 |      |     | 100  | μА    | 0.0             | V <sub>OUT</sub> = 5.5V; All Others GND              |
| I <sub>CCH</sub> | Power Supply Current              |                 |      |     | 2.0  | mA    | Max             | All Outputs HIGH                                     |
| I <sub>CCL</sub> | Power Supply Current              |                 |      |     | 60   | mA    | Max             | All Outputs LOW                                      |
| I <sub>CCZ</sub> | Power Supply Current              |                 |      |     | 2.0  | mA    | Max             | OE <sub>n</sub> = V <sub>CC</sub>                    |
|                  |                                   |                 |      |     |      |       |                 | All Others at V <sub>CC</sub> or GND                 |
| I <sub>CCT</sub> | Additional I <sub>CC</sub> /Input | Outputs Enabled |      |     | 3.0  | mA    |                 | V <sub>I</sub> = V <sub>CC</sub> - 2.1V              |
|                  |                                   | Outputs 3-STATE |      |     | 3.0  | mA    | Max             | Enable Input V <sub>I</sub> = V <sub>CC</sub> - 2.1V |
|                  |                                   | Outputs 3-STATE |      |     | 50   | μΑ    |                 | Data Input V <sub>I</sub> = V <sub>CC</sub> - 2.1V   |
|                  |                                   |                 |      |     |      |       |                 | All Others at V <sub>CC</sub> or GND                 |
| I <sub>CCD</sub> | Dynamic I <sub>CC</sub>           | No Load         |      |     |      | mA/   | <b></b>         | Outputs OPEN                                         |
|                  | (Note 3)                          |                 |      |     | 0.1  | MHz   | Max             | OE <sub>n</sub> = GND                                |
|                  |                                   |                 |      |     |      |       |                 | One Bit Toggling, 50% Duty Cycle                     |

Note 3: Guaranteed, but not tested.

## **AC Electrical Characteristics**


| Symbol           | Parameter             |     | $T_A = +25^{\circ}C$ $V_{CC} = +5V$ $C_L = 50 \text{ pF}$ |     | V <sub>CC</sub> = 4. | C to +85°C<br>.5V–5.5V<br>50 pF | Units |
|------------------|-----------------------|-----|-----------------------------------------------------------|-----|----------------------|---------------------------------|-------|
|                  |                       | Min | Тур                                                       | Max | Min                  | Max                             |       |
| t <sub>PLH</sub> | Propagation           | 1.0 | 2.4                                                       | 3.9 | 1.0                  | 3.9                             | ns    |
| t <sub>PHL</sub> | Delay Data to Outputs | 1.0 | 3.2                                                       | 4.7 | 1.0                  | 4.7                             | 115   |
| t <sub>PZH</sub> | Output                | 1.5 | 3.5                                                       | 6.3 | 1.5                  | 6.3                             | ns    |
| $t_{PZL}$        | Enable Time           | 1.5 | 4.2                                                       | 6.9 | 1.5                  | 6.9                             | 115   |
| t <sub>PHZ</sub> | Output                | 1.0 | 4.2                                                       | 6.7 | 1.0                  | 6.7                             | 200   |
| $t_{PLZ}$        | Disable Time          | 1.0 | 3.8                                                       | 6.7 | 1.0                  | 6.7                             | ns    |

## Capacitance

| Symbol                    | Parameter          | Тур | Units | Conditions<br>T <sub>A</sub> = 25°C |
|---------------------------|--------------------|-----|-------|-------------------------------------|
| C <sub>IN</sub>           | Input Capacitance  | 5.0 | pF    | V <sub>CC</sub> = 0.0V              |
| C <sub>OUT</sub> (Note 4) | Output Capacitance | 9.0 | pF    | V <sub>CC</sub> = 5.0V              |

 $\textbf{Note 4: } C_{OUT} \text{ is measured at frequency } f = 1 \text{ MHz per MIL-STD-883, Method 3012.}$ 

## **AC Loading**



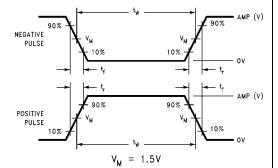



FIGURE 1. Standard AC Test Load

FIGURE 2. Input Pulse Requirements

| 3.0V 1 MHz 500 ns 2.5 ns 2.5 n | Amplitude | Rep. Rate | t <sub>W</sub> | t <sub>r</sub> | t <sub>f</sub> |
|--------------------------------|-----------|-----------|----------------|----------------|----------------|
| ****                           | 3.0V      | 1 MHz     | 500 ns         | 2.5 ns         | 2.5 ns         |

FIGURE 3. Test Input Signal Requirements

#### **AC Waveforms**

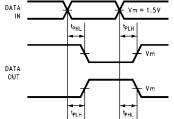



FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

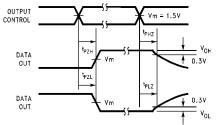



FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times

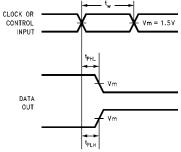



FIGURE 5. Propagation Delay, Pulse Width Waveforms

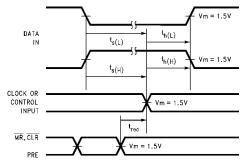
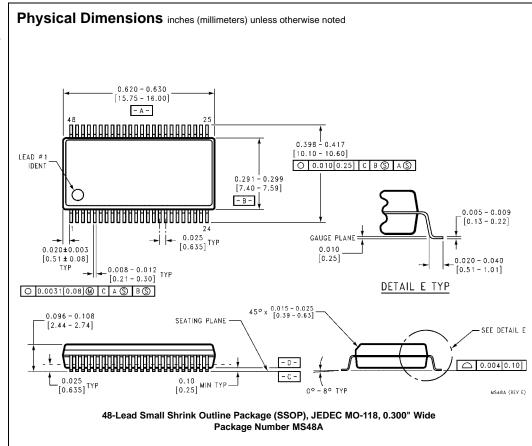
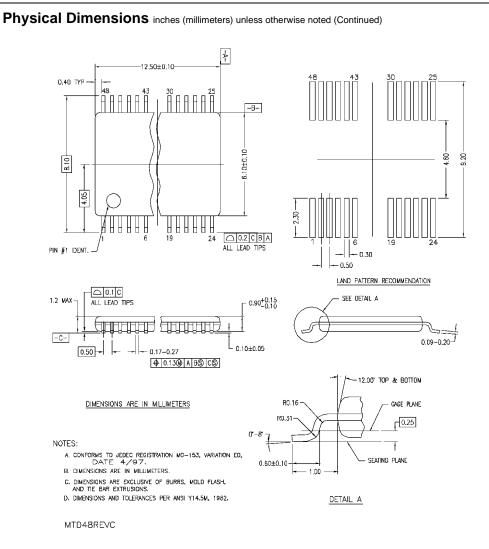





FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms





48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com