Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

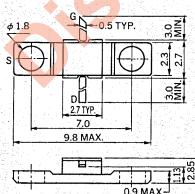
GaAs MES FET NE9001

Ku-BAND POWER GaAs FET N-CHANNEL GaAs MES FET

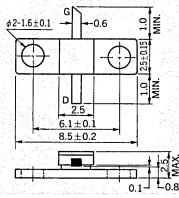
DESCRIPTION

The NE9001 is a power GaAs FET employing a 0.5 μ m recessed gate for commercial, space amplifier and oscillator applications up to 20 GHz. The device incorporates N⁺ doping with silicon nitride passivation and silicon dioxide glassivation for sperior scratch resistance and mechanical protection. The NE900100 is one cell of 750 μ m gate width and is available in chip form. The NE900175, NE900176 and NE900189A are available in hermetically sealed ceramic packages.

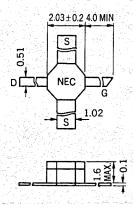
FEATURES


- Class A operation
- High output power
- High power added efficiency

ORDERING INFORMATION


PART NUMBER	PACKAGE CODE
NE900100	00 (CHIP)
NE900100G*1	00 (CHIP)
NE900175	75
NE900176	76
NE900189A	89A

^{*1} The device has wraparound sidewall metallization for source grounding.



PACKAGE CODE - 76 (Units in mm)

PACKAGE CODE - 89A (Units in mm)

The waffle pack is marked with a circle to indicate which side of the chip has the good cell.

^{*2} The NE900100 has one good cell on the two-cell chip.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

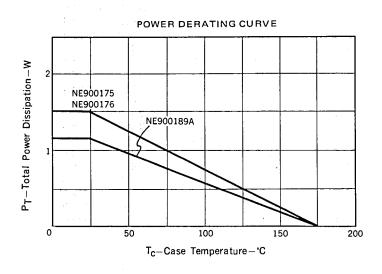
Drain to Source Voltage	V _{DS}	20	V	
Gate to Source Voltage	V_{GS}	-9	٧	
Drain Current	I _D	300	mA	
Gate Current	I _G	2.6	mA	
Total Power Dissipation	$P_{T_{\underline{1}} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}}$	1.5 ^{*3}	W ** ***	(NE900100 NE900175) NE900100G NE900176
The state of the s		1.15 *3	- W	(NE900189A)

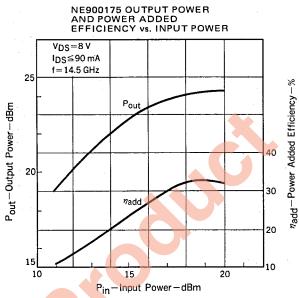
^{*3} $T_c = 25$ °C

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

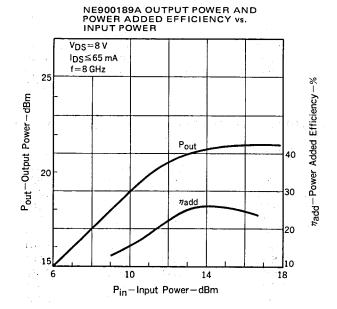
CHARACTERISTIC	SYMBOL	NE900100, NE900100G NE900175, NE900176			NE900189A			UNIT	TEST CONDITIONS	
proprieta de la companya de la comp		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	1.11	V Yan and a second	
Saturated Drain Current	IDSS	150	225	300	150	225	300	mA	V _{DS} = 2.5 V, V _{GS} = 0 V	
Pinch-off Voltage	VP	-5	-3.5		-5	-3.5		V	V _{DS} = 2.5 V, I _{DS} = 5 mA	
Transconductance	g _m		50			75		mS	$V_{DS} = 2.5 \text{ V, } I_{DS} = 90 \text{ mA}$	
Thermal Resistance	R _{th}	*		100			130	°C/W	channel to case	

PERFORMANCE SPECIFICATIONS (T_a = 25 °C)


CHARACTERISTIC	SYMBOL	NE	90010 90010 90017	00G	N	E9001	76	NE	90018	9A	UNIT	TEST CON	IDITIONS
	est a gar	MIN.	TYP.	мах.	MIN.	TYP.	мах.	MIN.	TYP.	MAX.			
0	P _{out}	22	23								dBm	$V_{DS} = 8 V$ $I_{DS} \le 90 \text{ mA}^{*4}$	f = 14.5 GHz P _{in} = 15 dBm
Output Power		t			22	23		20.5	21.5		dBm	IDS ≦ 65 mA*5	f = 8 GHz P _{in} = 13 dBm* ⁶
Output Power	PO(1 dB)		23		V						dBm	$V_{DS} = 8 V$ $I_{DS} \le 90 \text{ mA*}^4$	f = 14.5 GHz
at 1 dB Gain Compression Point						23			21		dBm	$I_{DS} \leq 65 \text{mA}^{*5}$	f = 8 GHz
Limon Coin	G.		8								dB	$V_{DS} = 8 V$ $I_{DS} \le 90 \text{ mA}^{*4}$	f = 14.5 GHz
Linear Gain	GL					9.5			9		dB	IDS ≥ 65 mA*5	f = 8 GHz
Power Added Efficiency* ⁷	η_{add}		27			30			27		%	V _{DS} = 8 V, P _{out} = P _{O(1 dB)}	


^{*4} The condition for NE900100, NE900175 and NE900176

^{*5} The condition for NE900189A


^{*6} P_{in} = 15 dBm for NE900176 *7 $\eta_{add} = \frac{P_{out} - P_{in}}{V_{DS} \times I_{DS}} \times 100$

TYPICAL CHARACTERISTIC ($T_a = 25$ °C)

NE900100 S-PARAMETER (V_{DS} = 8 V, I_{DS} = 90 mA)

frequency (MHz)	S ₁₁		s ₂₁	5	⁵ 12	s ₂₂		
2000	0.915 –59.1	3.985	137.0	0.048	59.7	0.546	-21.0	
3000	0.846 -85.1	3.467	117.6	0.062	47.0	0.516	-31.4	
4000	0.807 -106.6	2.998	102.8	0.069	38.9	0.460	-37.8	
5000	0.782 -123.5	2.585	89.9	0.072	35.3	0.449	-45.5	
6000	0.750138.4	2.231	78.2	0.070	28.6	0.409	-51.5	
7000	0.713 -148.0	1.943	70.4	0.053	39.3	0.419	-54.3	
8000	0.761 -158.9	1.787	60.3	0.125	38.8	0.397	-67.6	
9000	0.767 —168.3	1.619	51.4	0.080	26.3	0.418	-70.3	
10000	0.783 -175.3	1.459	42.9	0.081	27.7	0.412	–79.7	
11000	0.775 178.7	1.348	35.7	0.082	25.5	0.420	-84.4	
12000	0.760 172.5	1.219	27.6	0.080	27.1	0.407	-93.5	
13000	0.759 165.8	1.144	20.4	0.082	27.9	0.423	-98.5	
14000	0.778 159.7	1.058	13.2	0.081	28.8	0.420	-108.0	
15000	0.791 155.8	1.000	6.5	0.085	33.3	0.452	-115.5	
16000	0.777 151.6	0.930	-2.3	0.091	34.2	0.471	-122.7	
17000	0.741 147.7	0.856	-8.3	0.104	36.6	0.489	-128.9	
18000	0.733 140.4	0.819	-15.4	0.114	30.2	0.500	-138.9	

NE900100G S-PARAMETER (V_{DS} = 8 V, I_{DS} = 90 mA)

frequency (MHz)		S ₁₁		S ₂₁			S ₁₂		s ₂₂
2000	0.933	54.7	3.801	139.1	0.	049	57.4	0.493	26.6
3000	0.889	-78.6	3.401	123.2	0.	065	45.4	0.493	-31.4
4000	0.856	-98.5	2.979	108.3	0.	074	34.4	0.436	-42.9
5000	0.828	-113.9	2.596	95.4	0.	078	26.8	0.438	-51.6
6000	0.802	-127.9	2.282	84.1	0.	081	17.8	0.399	60.6
7000	0.765	-137.9	1.991	75.2	0.	067	13.2	0.406	-63.2
8000	0.798	-147.8	1.843	65.6	0.	108	28.1	0.402	74.9
9000	0.799	156.9	1.661	56.6	0.	880	4.3	0.412	77. 5
10000	0.803	-164.4	1.519	48.0	0.	880	1.3	0.405	-87.0
11000	0.797	-171.1	1.395	40.3	0.	089	-3.7	0,413	-91.5
12000	0.785	-178.0	1.278	31.3	0.	087	9.3	0.408	101.1
13000	0.781	175.1	1.181	23.9	0.	084	-12.3	0.415	- 105.5
14000	0.783	169.7	1.087	15.8	0.	082	–17.8	0.422	-115.6
15000	0.776	167.0	0.999	9.6	0.	076	-20.8	0.446	-121.6
16000	0.783	163.4	0.946	1.6	0.	075	-23.8	0.472	-128.6
17000	0.755	158.7	0.877	-5.3	0.	071	-25.1	0.486	-132.3
18000	0.745	153.5	0.832	-12.5	0.	074	-27.0	0.503	-140.0

NE900175 S-PARAMETER (VDS = 8 V, IDS = 90 mA)

frequency (MHz)		s ₁₁		s ₂₁			s ₁₂		s ₂₂
2000	0.886	-99.1	3.596	107.2		0.052	33,8	0.475	-44.4
3000	0.837	129.5	2.828	82.5	- :	0.058	19.9	0.446	-61.9
4000	0.821	-149.5	2.330	63.1	Date:	0.056	8.1	0.451	77.4
5000	0.800	-164.4	2.006	46.6		0.051	3.1	0.468	-89.3
6000	0.787	-176.9	1.851	31.6		0.051	6.1	0.495	-99.6
7000	0.765	169.8	1.789	16.6	11	0.053	8.5	0.509	-108.5
8000	0,724	153.8	1.804	0.4		0.059	11.0	0.523	115.8
9000	0.673	132.0	1.883	-17.4		0.072	8.4	0.519	-124.3
10000	0.641	103.8	2.056	-37.9		0.093	0.6	0.522	-134.7
11000	0.665	69.9	2.283	-63.7		0.132	-18.2	0.520	-153.4
12000	0.698	27.2	2.481	-96.1		0.157	-59.5	0.481	172.3
13000	0.587	-30.8	2.432	-134.6		0.107	-114.1	0.381	133.7
14000	0.489	101.4	1.949	-172.7		0.067	-150.0	0.324	84.7
15000	0.645	-170.3	1.686	149.4		0.047	158.3	0.293	64.5
16000	0.750	134.1	1.175	109.8		0.036	100.1	0.352	43.9
17000	0.825	94.6	0.738	77.3		0.037	63.7	0.412	29.0
18000	0.884	68.9	0.448	50.3		0.029	25.9	0.444	17.4

NE900176 S-PARAMETER ($V_{DS} = 8 \text{ V}, I_{DS} = 90 \text{ mA}$)

frequency (MHz)				S ₁₁		s ₂₁		s ₁₂			S ₂₂ - , ;		
	2000		0.872	-91.6	4.577	108.7	0.046	35.0		0.527	50.2		
	3000		0.812	-120.1	3.602	84.0	0.049	22.6		0.509	-69.8		
	4000		0.797	-139.9	2.941	64.0	0.045	14.6		0.518	-87.0		
	5000		0.789	-154.7	2.506	46.7	0.043	12.3		0.548	-101.6		
	6000		0.773	-167.0	2.233	31.3	0.041	19.0		0.577	113.5		
	7000		0.754	-179.5	2.084	16.0	0.046	24.3		0.603	-124.9		
	8000		0.721	165.4	2.024	-0.1	0.056	28.1		0.624	-135.1		
	9000		0.690	143.9	2.046	-19.1	0.072	20.2		0.650	-148.8		
	10000		0.680	114.2	2.045	-42.8	0.092	3.2		0.664	-168.0		
	11000		0.710	79.7	1.877	70.6	0.098	-26.4		0.630	162.6		
	12000		0.729	48.8	1.521	-96.3	0.083	-65.2		0.531	130.5		
	13000		0.702	24.1	1.206	-116.6	0.055	-107.2		0.428	104.4		
	14000		0.620	10.8	0.945	-132.6	0,037	-152.3		0.401	89.8		
	15000		0.696	-2.8	0.848	149.3	0.036	162.8		0.428	75.8		
	16000		0.725	-14.7	0.689	166.9	0.043	113.3		0.465	61.7		
	17000		0.821	-22.1	0.617	-174.8	0.025	72.9		0.484	54.1		
	18000		0.872	-34.3	0.645	168.6	0.019	178.9		0.526	47.9		

NE900189A S-PARAMETER ($V_{DS} = 8 \text{ V}, I_D = 90 \text{ mA}$)

frequency (MHz)		S ₁₁		S ₂₁		s ₁₂		s ₂₂
2000	0.822	-83.0	4.081	111.2	0.047	54.1	0.573	-33.0
3000	0.728	-117.0	3.442	84.1	0.060	44.6	0.528	-46.7
4000	0.659	-146.9	2.926	60.4	0.069	39.9	0.489	-60.7
5000	0.623	-173.7	2.534	39.1	0.080	37.5	0.459	-76.7
6000	0.619	163.0	2.227	19.3	0.095	34.9	0.435	-94.9
7000	0.633	143.5	1.990	0.6	0,115	30.1	0.429	-115.4
8000	0.646	126.5	1.810	-17.5	0.140	25.2	0.444	-136.3
9000	0.652	108.9	1.666	-36.0	0.170	15.8	0.473	158.8
10000	0.655	89.2	1.519	-55.3	0.201	4.4	0.516	178.1
11000	0.668	68.4	1.344	-74.5	0.225	-8.5	0.570	154.7
12000	0.654	51.6	1.130	-90.8	0.233	-18.9	0.624	134.4
13000	0.719	44.6	1.108	-107.6	0.277	-29.4	0.740	116.5
14000	0.719	30.6	0.930	-130.3	0.282	-44.6	0.828	95.7
15000	0.674	19.1	0.694	-161.0	0.271	-55.9	0.954	71.3
16000	0.718	16.7	0.122	-33.3	0.306	-47.4	0.857	24.8
17000	0.879	-9.1	0.777	119.1	0.442	-73.7	0.402	34.2
18000	0.879	-31.8	0.791	-154.6	0.454	-96.5	0.533	35.5

5

CHIP HANDLING

DIE ATTACHMENT

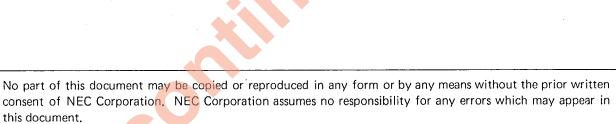
Die attach can be accomplished with a Au-Sn (300±10 °C) preforms in a forming gas environment. Epoxy die attach is not recommended.

BONDING

Gate and drain bonding wires should be minimum length, semi-hard gold wire (3-8 % elongation) 30 microns or less in diameter.

Bonding should be performed with a widge tip that has a taper of approximately 15 %. Die attach and bonding time should be kept to a minimum. As a general rule, the bonding operation should be kept within a $280\,^{\circ}\text{C} - 5$ minute curve. If longer periods are required, the temperature should be lowered.

PRECAUTIONS


The user must operate in a clean, dry environment. The chip channel is glassivated for mechanical protection only and does not preclude the necessity of a clean environment.

The bonding equipment should be periodically checked for sources of surge voltage and should be properly grounded at all times. In fact, all test and handling equipment should be grounded to minimize the possibilities of static discharge.

6

[MEMO]

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.