2 #### **Features** - Low Voltage and Standard Voltage Operation - 5.0 V (Vcc = 4.5 V to 5.5 V) - 3.0 V (Vcc = 2.7 V to 5.5 V) - User Selectable Internal Organization - 1K: 128 x 8 or 64 x 16 - 2K: 256 x 8 or 128 x 16 - 4K: 512 x 8 or 256 x 16 - Four-Wire Serial Interface - Self-Timed Write Cycle (10 ms Max) - High Reliability - Endurance: 100,000 Cycles - Data Retention: 100 Years - 8-Pin PDIP and JEDEC SOIC Packages # Description The AT59C11/12/13 provides 1024/2048/4096 bits of serial E²PROM (Electrically Erasable Programmable Read Only Memory) organized as 64/128/256 words of 16 bits each, when the ORG Pin is connected to V_{CC} and 128/256/512 words of 8 bits each when it is tied to ground. The device is optimized for use in many industrial and commercial applications where low power and low voltage operation are essential. The AT59C11/12/13 is available in space saving 8-pin PDIP and 8-pin JEDEC and SOIC packages. The AT59C11/12/13 is enabled through the Chip Select pin (CS), and accessed in a 4-wire serial interface consisting of Data Input (DI), Data Output (DO), and Cock (CLK). Upon receiving a READ instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO, the WRITE cycle is completely self-timed and no sequence ERASE cycle is required before WRITE. The WRITE cycle is only enabled the the part is in the ERASE/WRITE ENABLE state. Ready/Busy status can be monitered upon completion of a programming operation by polling the Ready/Busy pin. Atmel's E^2 PROMs are designed and tested for applications requiring extended endurance. Devices in this family are guaranteed for 100,000 ERASE/WRITE cycles and 100-year data retention. The AT59C11/12/13 is available in 5.0 V \pm 10% and 2.7 V to 5.5 V versions. Data retention is specified to be greater than 100 years. # Pin Configurations | | - 1 No. | |----------|---| | Pin Name | Function | | CS | Chip Select | | CLK | Serial Data Clock | | DI | Serial Data Input | | DO | Serial Data Output | | GND | Ground | | Vcc | Power Supply | | ORG | Internal Organization | | RDY/BUSY | Status Output | # 4-Wire Serial CMOS E²PROMs 1K (128 * 5 or 64 x 16) 256 x 8 or 128 x 16) #K (512 x 8 or 256 x 16) # Preliminary # **Absolute Maximum Ratings*** | Operating Temperature55°C to +125°C | |---| | Storage Temperature65°C to +150°C | | Voltage on Any Pin
with Respect to Ground1.0 V to +7.0 V | | Maximum Operating Voltage 6.25 V | | DC Output Current5.0 mA | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. # Block Diagram (1) #### Note: When the ORG pin is connected to V_{CC}, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device will select the x 16 organization. #### **D.C. Characteristics** Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +2.7$ V to +5.5 V, $T_{AC} = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +2.7$ V to +5.5 V (unless otherwise noted) | Symbol | Parameter | Test Condi | tion | Min | Max | Units | |------------------|---|--|--|-------------|----------------|-------| | lcc ₁ | Operating Current
CMOS Input Levels | CS = VIH, | CLK = 1.0 MHz ⁽¹⁾
CLK = 0.5 MHz ⁽¹⁾ | | 2 2 | mA | | lcc2 | Operating Current
TTL Input Levels | CS = VIH, | $CLK = 1.0 \text{ MHz}^{(1)}$
$CLK = 0.5 \text{ MHz}^{(1)}$ | | 3
3 | mA | | Іссз | Standby Current | CS = 0 V | CLK = 1.0 MHz ⁽¹⁾
CLK = 0.5 MHz ⁽¹⁾ | | 100
100 | μА | | lıL | Input Leakage | VIN = 0 V to | Vcc | -2.5
-10 | 2.5
10 | μА | | loL | Output Leakage | VIN = 0 V to | Vcc | -2.5
-10 | 2.5
10 | μА | | VIL1
VIH1 | Input Low Voltage
Input High Voltage | 4.5 V ≤ V _{CC} | ; ≤ 5.5 V | 2 | 0.8 | V | | VIL2
VIH2 | Input Low Voltage
Input High Voltage | 2.7 V ≤ Vcc | ; ≤ 5.5 V | -0.1
2 | 0.6
VCC + 1 | V | | VOL1
VOH1 | Output Low Voltage
Output High Voltage | 4.5 V ≤ V _{CC}
l _{OL} = 2.1 m
l _{OH} = -400 j | A | 2.4 | 0.4 | V | | VOL2
VOH2 | Output Low Voltage
Output High Voltage | 2.7 V ≤ V _{CC}
lo _L = 10 μA
lo _H = -10 μ | | Vcc - 0.2 | 0.2 | V | Note: 1. Devices operate at 1.0 MHz at VCC = $5.0 \text{ V} \pm 10\%$ at commercial temperature. All low voltage and industrial parts operate at 0.5 MHz. #### A.C. Characteristics Applicable over recommended operating range from $T_A = -40^{\circ}C$ to + 85°C, $V_{CC} = +2.7$ V to +5.5 V, CL = 1 TTL Gate and 100 pF (unless otherwise noted) | Symbol | Parameter | Test Condition | Min | Max | Units | |--------|----------------------------|-----------------------------------|--------------------|-------------|--------| | fcLK | CLK Clock Frequency | | 0 | 1
0.5 | MHz | | tскн | CLK High Time | Note 1
Note 2 | 500
500 | | ns | | tckL | CLK Low Time | Note 1
Note 2 | 250
500 | | ns | | tcs | Minimum CS Low Time | Note 3
Note 4 | 250
500 | | ns | | tcss | CS Setup Time | Relative to CLK | 50
100 | | ns | | tois | DI Setup Time | Relative to CLK | 100
200 | | ns | | tcsн | CS Hold Time | Relative to CLK | 0 | | ns | | toiH | DI Hold Time | Relative to CLK | 100
200 | | ns | | tpD | Output Delay | AC Test | | 500
1000 | ns | | tred | CS to Status Valid | AC Test | | 500
1000 | ns | | tcz | CS to DO in High Impedance | AC Test
CS = V _{IL} | | 100
200 | ns | | twc | Write Cycle Time | | | 10 | ms | | | Endurance | Number of Data
Changes per Bit | Typical
100,000 | | Cycles | #### Notes: - The CLK frequency specification for Commercial parts specifies a minimum CLK clock period of 1 µs, therefore in an CLK clock cycle t_{CKH} + t_{CKL} must be greater than or equal to 2 µs. For example if t_{CKL} = 250 ns then the minimum t_{CKH} = 750 ns in order to meet the CLK frequency specification. - The CLK frequency specification for extended Temperature parts specifies a minimum CLK clock period of 2 μs, therefore - in an CLK clock cycle t_{CKH} + t_{CKL} must be greater than or equal to 2 μ s. For example, if the t_{CKL} = 500 ns then the minimum t_{CKH} = 1.5 μ s in order to meet the CLK frequency specification. - For Commercial parts CS must be brought low for a minimum of 250 ns (tcs) between consecutive instruction cycles. - For Extended Temperature parts CS must be brought low for a minimum of 500 ns (tcs) between consecutive instruction cycles. # Pin Capacitance (1) Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, Vcc = +5.0 V (unless otherwise noted) | | Test Conditions | Max | Units | Conditions | |------|---|-----|-------|------------| | Cout | Output Capacitance (DO) | 5 | pF | Vout = 0 V | | Cin | Input Capacitance (CS, CLK, DI, RDY/BUSY) | 5 | pF | VIN = 0 V | Note: 1. This parameter is characterized and is not 100% tested. ### **Functional Description** The AT59C11/12/13 are accessed via a simple and versatile 4-wire serial communication interface. Device operation is controlled by 6 instructions issued by the host processor. A valid instruction consists of a Start Bit (logic '1') followed by the appropriate Op Code and the desired memory Address location. READ (READ): The Read (READ) instruction contains the Address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock CLK. It should be noted that a dummy bit (logic '0') precedes the 8- or 16-bit data output string. ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the Erase/Write Enable state, programming remains enabled until an Erase/Write Disable (EWDS) instruction is executed or VCC power is removed from the part. WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle starts after the last bit of data is received at serial data input pin DI. The Ready/Busy status of the AT59C11/12/13 can be determined by polling the RDY/BUSY pin. A logic '0' at DO indicates that programming is still in progress. A logic '1' indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic '1' state and is primarily used for testing purposes. The Ready/Busy status of the AT59C11/12/13 can be determined by polling the RDY/BUSY pin. The ERAL instruction is valid only at V_{CC} = 5.0 V ± 10%. WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The Ready/Busy status of the AT59C11/12/13 can be determined by polling the RDY/BUSY pin. The WRAL instruction is valid only at $V_{CC} = 5.0 \text{ V} \pm 10\%$. ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time. #### Instruction Set for the AT59C11 | | | Op | Address | | D | ata | | | |-------------|----|------|---------|--------|--------------------------------|---------------------------------|--|--| | instruction | SB | Code | x 8 | x 16 | x 8 | x 16 | Comments | | | READ | 1 | 10XX | A6-A0 | A5-A0 | | | Reads data stored in memory, at specified address. | | | EWEN | 1 | 0011 | 0000000 | 000000 | | | Write enable must precede all programming modes. | | | WRITE | 1 | X1XX | A6-A0 | A5-A0 | D7-D0 | D ₁₅ -D ₀ | Writes memory location An - Ao. | | | ERAL | 1 | 0010 | 0000000 | 000000 | | | Erases all memory locations. Valid only at Vcc = 4.5 V to 5.5 V. | | | WRAL | 1 | 0001 | 0000000 | 000000 | D ₇ -D ₀ | D ₁₅ -D ₀ | Writes all memory locations. Valid only at Vcc = 4.5 V to 5.5 V. | | | EWDS | 1 | 0000 | 0000000 | 000000 | | | Disables all programming instructions. | | ### Instruction Set for the AT59C12 and AT59C13 | | | Op | Add | ress | D | ata | | |-------------|----|------|-----------|----------|--------------------------------|---------------------------------|---| | Instruction | SB | Code | x 8 | x 16 | x 8 | x 16 | Comments | | READ | 1 | 10XX | As-Ao | A7-A0 | | | Reads data stored in memory, at specified address. | | EWEN | 1 | 0011 | 00000000 | 00000000 | | | Write enable must precede all programming modes. | | WRITE | 1 | X1XX | A8-A0 | A7-A0 | D ₇ -D ₀ | D ₁₅ -D ₀ | Writes memory location An - Ao. | | ERAL | 1 | 0010 | 00000000 | 00000000 | | | Erases all memory locations. Valid only at Vcc = 4.5 V to 5.5 V. | | WRAL | 1 | 0001 | 000000000 | 00000000 | D7-D0 | D ₁₅ -D ₀ | Writes all memory locations. Valid when $V_{CC} = 5.0 \text{ V} \pm 10\%$ and Disable Register cleared. | | EWDS | 1 | 0000 | 000000000 | 00000000 | | | Disables all programming instructions. | # **Timing Diagrams** ### **Synchronous Data Timing** Note: 1. This is the minimum CLK period. # **Organization Key for Timing Diagrams** | | Density 1K | | Dens | ity 2K | Density 4K | | |-----|----------------|------|----------------|-----------------------|------------|------| | I/O | x 8 | x 16 | x 8 | x 16 | x 8 | x 16 | | An | A ₆ | A5 | A ₈ | A ₇ | A8 | A7 | | DN | D ₇ | D15 | D7 | D15 | D7 | D15 | # Timing Diagrams (Continued) ### **READ Timing** ### **WRITE Timing** # **EWEN/EWDS Timing** # Timing Diagrams (Continued) #### **ERAL Timing** ## **WRAL Timing** # **Ordering Information** | twc
(ms) | Icc
(mA) | fmax
(kHz) | Ordering Code | Package | Operation Range | |-------------|-------------|---------------|--|------------|-------------------------------| | 10 | 3.0 | 1000 | AT59C11-10PC (-2.7)
AT59C11-10SC (-2.7) | 8P3
8S1 | Commercial
(0°C to 70°C) | | | | | AT59C11-10PI (-2.7)
AT59C11-10SI (-2.7) | 8P3
8S1 | Industrial
(-40°C to 85°C) | | | | | AT59C11-10PM | 8P3 | Military
(-55°C to 125°C) | | 10 | 3.0 | 1000 | AT59C12-10PC (-2.7)
AT59C12-10SC (-2.7) | 8P3
8S1 | Commercial
(0°C to 70°C) | | | | | AT59C12-10PI (-2.7)
AT59C12-10SI (-2.7) | 8P3
8S1 | Industrial
(-40°C to 85°C) | | | | | AT59C12-10PM | 8P3 | Military
(-55°C to 125°C) | | 10 | 3.0 | 1000 | AT59C13-10PC (-2.7) | 8P3 | 0 | | 10 | 0.0 | 1000 | AT59C13-10SC (-2.7) | 8S1 | Commercial
(0°C to 70°C) | | | | | AT59C13-10PI (-2.7)
AT59C13-10SI (-2.7) | 8P3
8S1 | Industrial
(-40°C to 85°C) | | | | | AT59C13-10PM | 8P3 | Military
(-55°C to 125°C) | | | Package Type | | |-------|---|--| | 8P3 | 8 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) | | | 8S1 | 8 Lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) | | | | Options | | | Blank | Standard Device (4.5 V to 5.5 V) | | | -2.7 | Low Voltage (2.7 V to 5.5 V) | |