P29FCT52A/B/C (P29PCT52A/B/C) P29FCT53A/B/C (P29PCT53A/B/C) OCTAL REGISTERED TRANSCEIVER

FEATURES

- Function, Pinout, and Drive Compatible with the FCT, F Logic, and Am2952/53
- FCT-C speed at 6.3ns max. (Com'l) FCT-A speed at 7.5ns max. (Com'l)
- CMOS for Low Power Consumption
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

- **■** ESD protection exceeds 2000V
- Inputs and Outputs Interface Directly with TTL, NMOS, and CMOS Devices
- Outputs Meet Levels Required for CMOS Static RAM Low Power Standby Mode
- # 64 mA Sink Current (Com'l), 48 mA (Mil) 24 mA Source Current (Com'l), 15 mA (Mil)
- Manufactured in 0.8 micron PACE Technology™

DESCRIPTION

The '29FCT53 AND '29FCT53 have two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and 3-state output enable signals are provided for each register. Both A outputs and B outputs are guaranteed to sink 64mA.

The '29FCT52 is an inverting option of the '29FCT53.

The '29FCT52 and '29FCT53 are manufactured using PACE Technology™ which is Performance Advanced

CMOS Engineered to use 0.8 micron effective channel lengths resulting in 500 picoseconds loaded* internal gate delays. PACE Technology includes two-level metal and epitaxial substrates. In addition to very high performance and very high density, the technology features latch-up protection and single event upset protection, and is supported by a Class 1 environment volume production facility.

For a fan-in/fan-out of 4 at 85°C junction temperature and 5.0 V supply.
For a fan-in/fan-out of 1, the internal gate delay is 200 picosecond at room temperature.

24

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Means Quality, Service and Speed

REGISTERED FUNCTION TABLE

	Inputs		Internal	Function
D	СР	CE	Q	Function
X	X	Н	NC	Hold Data
L	7	L	L	Load Data
Н		L	Н	

OUTPUT CONTROL

ŌĒ	internal	Y-Ou	tputs	_
j S	Q	'29FCT52	'29FCT53	Function
Ι	Х	Z	Z	Disable Outputs
L	L	L	Н	Enable Outputs
L	Н	Н	L	

1806 Tbl 01

1806 Tbl 02

PIN DESCRIPTION

Name	1/0	Description
A ₀₋₇	1/0	Eight bidirectional lines carrying the A Register inputs or B Register outputs.
B ₀₋₇	1/0	Eight bidirectional lines carrying the B Register inputs or A Register outputs.
СРА	ı	Clock for the A Register. When CEA is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal.
CEA	1	Clock Enable for the A Register. When \overline{CEA} is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal. When \overline{CEA} is HIGH, the A Register holds its contents regardless of CPA signal transitions.
OEB	ı	Output Enable for the A Register. When \overline{OEB} is LOW, the A Register outputs are enabled onto the B_{0-7} lines. When \overline{OEB} is HIGH, the B_{0-7} outputs are in the high impedence state.
СРВ	I	Clock for the B Register. When $\overline{\text{CEB}}$ is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal.
CEB	l	Clock Enable for the B Register. When \overline{CEB} is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal. When \overline{CEB} is HIGH, the B Register holds its contents regardless of CPB signal transitions.
ŌĒĀ	l	Output Enable for the B Register. When \overline{OEA} is LOW, the B Register outputs are enabled onto the A_{0-7} lines. When \overline{OEA} is HIGH, the A_{0-7} outputs are in the high impedence state.

1806 Tbi 03

ABSOLUTE MAXIMUM RATINGS12

Symbol	Parameter	Value	Unit
T _{stG}	Storage Temperature	-65 to +150	°C
T _A	Ambient Temperature Under Bias	-65 to +135	°C
V _{cc}	V _{cc} Potential to Ground	-0.5 to +7.0	V
l _{IN}	Input Current	-30 to +5.0	mA

lotes:	1806 Tbl

Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
OUTPUT	Current Applied to Output	120	mA
V _{IN}	Input Voltage	-0.5 to $V_{cc} + 0.5$	٧
V _{out}	Voltage Applied to Output	-0.5 to $V_{cc} + 0.5$	٧

1806 Tbl 05

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	-55°C	+125°C
Commercial	0°C	+70°C

Supply Voltage (V _{cc})	Min	Max
Military	+4.5V	+5.5V
Commercial	+4.75V	+5.25V

1806 Tbl 07

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

1806 Tbl 06

Symbol		Parameter	Min	Typ¹	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIC	GH Voltage	2.0			V		
V _{IL}	Input LO	Input LOW Voltage			0.8	V		
V _H	Hysteres	is		0.35		٧		All inputs
V _{CD}	Input Cla	ımp Diode Voltage		-0.7	-1.2	V	MIN	I _{IN} = -18mA
		$V_{cc} = 3V, V_{IN} = 0.2V, \text{ or } V_{cc} - 0.2V$	$V_{cc} - 0.2$	V _{cc}		٧		I _{OH} = -32μΑ
V _{OH}	Output HIGH Voltage	Military/Commercial (CMOS) Military (TTL) Commercial (TTL)	V _{cc} - 0.2 2.4 2.7	V _{cc} 4.3 4.3		>>>	MIN MIN MIN	I _{OH} = -15mA
		$V_{CC} = 3V$, $V_{IN} = 0.2V$, or $V_{CC} - 0.2V$		·	0.2	٧		I _{OL} = 300μA
V _{OL}	Output LOW Voltage	Military/Commercial (CMOS) Military (TTL) Commercial (TTL)	·	GND 0.3 0.3	0.2 0.55 0.55	V V V	MIN MIN MIN	$I_{OL} = 48 \text{mA}$
I _{IH}	Input HIC	GH Current (Except I/O Pins)			5	μА	MAX	V _{IN} = V _{CC}
1,	Input LO	W Current (Except I/O Pins)			 5	μА		V _{IN} = GND
I _{IH}	input Hi	GH Current ³ (Except I/O Pins)			5	μА	MAX	$V_{1N} = 2.7V$
I _{IL}	Input LO	W Current ³ (Except I/O Pins)			- 5	μΑ	MAX	$V_{1N} = 0.5V$
I _{IH}	Input HIG	6H Current (I/O Pins only)			15	μА	MAX	$V_{IN} = V_{CC}$
1,_	Input LO	W Current (I/O Pins only)			–15	μΑ	MAX	V _{IN} = GND
1,,,	Input HIG	GH Current ³ (I/O Pins only)			15	μΑ	MAX	$V_{1N} = 2.7V$
1,	Input LOW Current ³ (I/O Pins only)				– 15	μΑ	MAX	$V_{1N} = 0.5V$
los	Output Short Circuit Current ²		-60			mA	MAX	$V_{OUT} = 0.0V$
C _{IN}	Input Cap	pacitance ³		5	10	pF		All inputs
C _{out}	Output C	apacitance ³		9	12	рF		All outputs

Notes:

- 1. Typical limits are at $V_{cc} = 5.0V$, $T_A = +25$ °C ambient.
- 2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
- operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I os tests should be performed last.
- 3. This parameter is guaranteed but not tested.

1**80**6Tbl 08

^{2.} Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{∞} or ground.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ¹	Max	Units	Conditions
Icc	Quiescent Power Supply Current (CMOS inputs)	0.5	1.5	mA	$V_{CC} = MAX$, $f_1 = 0$, Outputs Open, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
ΔΙ _{cc}	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$V_{CC} = MAX$, $V_{IN} = 3.4V^2$, $f_1 = 0$, Outputs Open
I _{CCD}	Dynamic Power Supply Current ³	0.15	0.25	mA/ mHz	V_{CC} = MAX, One Input Toggling, 50% Duty Cycle, \overline{OEA} or \overline{OEB} = GND Outputs Open, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
		2.0	4.0	mA	V_{CC} = MAX, f_0 = 10 MHz, 50% Duty Cycle, Outputs Open, One Bit Toggling at f_1 = 5MHz, OEA or OEB = GND, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
I _c	Total Power Supply Current⁵	2.5	6.0	mA	V_{CC} = MAX, f_0 = 10 MHz, 50% Duty Cycle, Outputs Open, One Bit Toggling at f_1 = 5MHz, OEA or OEB = GND, V_{IN} = 3.4V or V_{IN} = GND
		4.3	7.8⁴	mA	$V_{\rm CC}$ = MAX, $f_{\rm 0}$ = 10 MHz, 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{\rm 1}$ = 2.5MHz, OEA or OEB = GND, $V_{\rm IN} \le 0.2 {\rm V}$ or $V_{\rm IN} \ge V_{\rm CC} - 0.2 {\rm V}$
		6.5	16.84	mA	$V_{CC} = MAX$, $f_0 = 10 MHz$, 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_1 = 2.5MHz$, \overline{OEA} or $\overline{OEB} = GND$, $V_{IN} = 3.4V$ or $V_{IN} = GND$

Notes

 Typical values are at V_{ce} = 5.0V, +25°C ambient and maximum loading. I_{ccor}= Power Supply Current for a TTL High Input

 $(V_N = 3.4V)$

D_H = Duty Cycle for TTL Inputs High

N, = Number of TTL Inputs at D,

I_{cco} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

1806 Tbl 09

f_e = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f. = Input Frequency

N, = Number of Inputs at f,

All currents are in milliamps and all frequencies are in megahertz.

^{2.} Per TTL driven input ($V_N = 3.4V$); all other inputs at $V_{\rm oc}$ or GND.

^{3.} This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.

^{5.} $l_{\text{CC}} = l_{\text{OUIESCENT}} + l_{\text{INPUTS}} + l_{\text{DYNAMC}}$ $l_{\text{CC}} = l_{\text{CCOC}} + l_{\text{CCOT}} D_{\text{H}} N_{\text{T}} + l_{\text{CCO}} (f_{\text{d}}/2 + f_{\text{1}} N_{\text{1}})$ $l_{\text{CCOC}} = \text{Quiescent Current with CMOS input levels}$

AC CHARACTERISTICS

		Р	P29FCT52A/53A			P29FCT52B/53B				P	29FC7				
Symbol	Parameter	MIL C		CC	COM'L		MIL		COM'L		/ IL	IL COM'L		Units	Fig.
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		No.
t _{PLH} t _{PHL}	Propagation Delay CPA, CPB to B _n , A _n	2.0	11.0	2.0	10.0	2.0	8.0	2.0	7.5	2.0	7.3	2.0	6.3	ns	1,5
t _{PZH} t _{PZL}	Output Enable Time OEA or OEB to A, or B,	1.5	13.0	1.5	10.5	1.5	8.5	1.5	8.0	1.5	8.0	1.5	7.0	ns	1,7,8
t _{PHZ} t _{PLZ}	Output Enable Time OEA or OEB to A, or B,	1.5	10.0	1.5	10.0	1.5	8.0	1.5	7.5	1.5	7.5	1.5	6.5	ns	1,7,8
lotes:								<u></u>	<u> </u>	L	<u></u>			1	806 Tbl 10

Notes:

- 1. Minimum limits are guaranteed but not tested on Propagation Delays.
- 2. AC Characteristics guaranteed with C_L = 50pF as shown in Figure 1.

AC OPERATING REQUIREMENTS

		P2	P29FCT52A/53A			P29FCT52B/53B				P29FCT52C/53C					
Symbol	Parameter	N	MIL		COM'L		MIL		COM'L		IL	COM'L		Units	Fig.
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		INC.
t _s (H) t _s (L)	Setup Time, HIGH or LOW, A _n ,B _n to CPA, CPB	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	2.5	_	ns	4
t _h (H) t _h (L)	Hold Time, HIGH or LOW, A _n B _n to CPA, CPB	2.0	_	2.0	_	1.5	_	1.5	_	1.5	_	1.5	_	ns	4
t _s (H) t _s (L)	Set-up Time, HIGH or LOW, CEA, CEB to CPA, CPB	3.0		3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns	4
t _h (H) t _h (L)	Hold Time, HIGH or LOW, CEA, CEB to CPA, CPB	2.0	_	2.0	ı	2.0	_	2.0	1	2.0	-	2.0	_	ns	4
t,,(H) t,,(L)	Pulse Width, HIGH or LOW, CPA or CPB	3.0	_	3.0	_	3.0	-	3.0	_	3.0	_	3.0	_	ns	5

1. Minimum limits are guaranteed but not tested on Propagation Delays.

1806 Tbl 11

ORDERING INFORMATION

1806 03