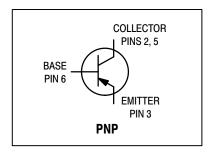

General Purpose Transistors PNP Bipolar Junction Transistor

(Complementary NPN Device: MMBT2132T1/T3)

NOTE: Voltage and Current are negative for the PNP Transistor.

30 VOLTS - V(BR)CEO 342 mW


MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) **Symbol** Value Unit Rating Collector-Emitter Voltage VCEO30 V Collector-Base Voltage **V**СВО 40 V Emitter-Base Voltage **V**ЕВО 5.0 ٧ Collector Current IC 700 mΑ **Base Current** 350 mΑ lΒ Total Power Dissipation @ $T_C = 25^{\circ}C$ P_D 342 mW Total Power Dissipation @ T_C = 85°C P_D 178 mW Thermal Resistance – Junction to Ambient (1) $\mathsf{R}_{\theta\mathsf{J}\mathsf{A}}$ 366 °C/W Total Power Dissipation @ T_C = 25°C 665 P_D mW Total Power Dissipation @ $T_C = 85^{\circ}C$ 346 mW P_D Thermal Resistance – Junction to Ambient (2) 188 °C/W $R_{\theta JA}$ Operating and Storage Temperature Range T_J, T_{stg} -55 to +150

MMBT2131T1

MMBT2131T3

0.7 AMPERES

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characte	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Base Breakdown Voltage	$(I_C = 100 \mu\text{Adc})$	V(BR)CBO	40	_	_	Vdc
Collector–Emitter Breakdown Voltage	(I _C = 10 mAdc)	V(BR)CEO	30	_	_	Vdc
Emitter-Base Breakdown Voltage	(I _E = 100 μAdc)	V(BR)EBO	5.0	_	_	Vdc
Collector Cutoff Current (VCI	(V _{CB} = 25 Vdc, I _E = 0 Adc) B = 25 Vdc, I _E = 0 Adc, T _A = 125°C)	I _{CBO}	-	-	1.0 10	μAdc
Emitter Cutoff Current	$(V_{EB} = 5.0 \text{ Vdc}, I_{C} = 0 \text{ Adc})$	I _{EBO}	_	-	10	μAdc
ON CHARACTERISTICS						
DC Current Gain	$(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 100 \text{ mAdc})$	hFE	150	-	_	Vdc
Collector–Emitter Saturation Voltage	$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	VCE(sat)	_	-	0.25	Vdc
Collector–Emitter Saturation Voltage	$(I_C = 700 \text{ mAdc}, I_B = 70 \text{ mAdc})$	VCE(sat)	_	-	0.4	Vdc
Base–Emitter Saturation Voltage	$(I_C = 700 \text{ mAdc}, I_B = 70 \text{ mAdc})$	V _{BE(sat)}	_	_	1.1	Vdc
Collector–Emitter Saturation Voltage	$(I_C = 700 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	V _{BE(on)}	_	_	1.0	Vdc

- 1. Minimum FR-4 or G-10 PCB, Operating to Steady State.
- 2. Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), Operating to Steady State.

MMBT2131T1 MMBT2131T3

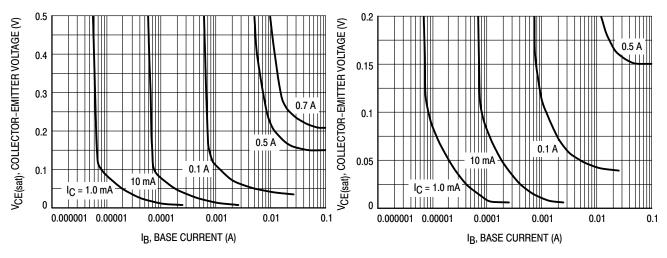


Figure 1. Collector Saturation Region

Figure 2. Collector Saturation Region

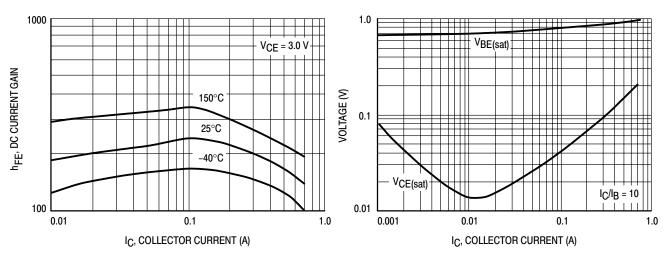


Figure 3. DC Current Gain

Figure 4. "ON" Voltages

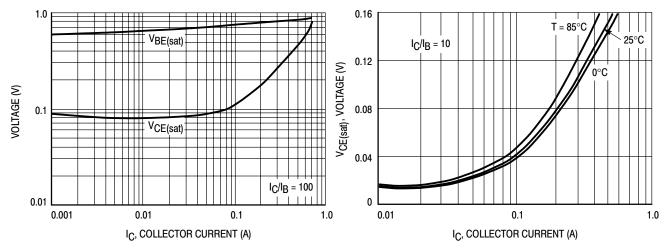


Figure 5. "ON" Voltages

Figure 6. Collector-Emitter Saturation Voltage

MMBT2131T1 MMBT2131T3

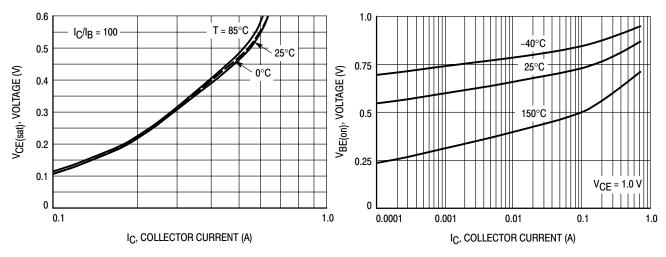


Figure 7. Collector-Emitter Saturation Voltage

Figure 8. VBE(on) Voltage

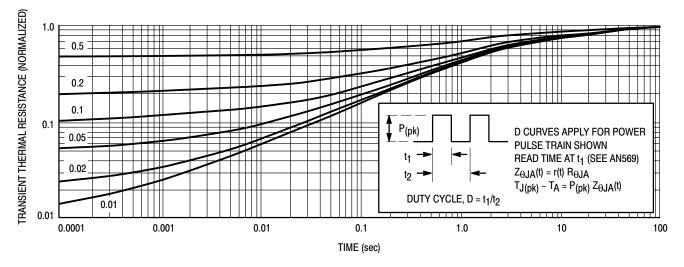
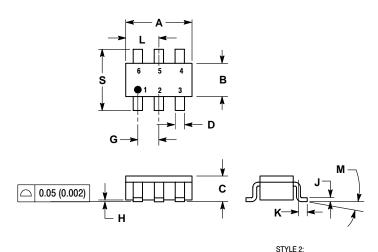



Figure 9. Thermal Response Curve

MMBT2131T1 MMBT2131T3

PACKAGE DIMENSIONS

SC-74 CASE 318F-03 **ISSUE F**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- CONTROLLING DIMENSION: INCH.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- 318F-01 AND -02 OBSOLETE. NEW STANDARD 318F-03.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.1142	0.1220	2.90	3.10	
В	0.0512	0.0669	1.30	1.70	
С	0.0354	0.0433	0.90	1.10	
D	0.0098	0.0197	0.25	0.50	
G	0.0335	0.0413	0.85	1.05	
Н	0.0005	0.0040	0.013	0.100	
J	0.0040	0.0102	0.10	0.26	
K	0.0079	0.0236	0.20	0.60	
L	0.0493	0.0649	1.25	1.65	
M	0 °	10°	0 °	10°	
S	0.0985	0.1181	2.50	3.00	

- PIN 1. NO CONNECTION
 2. COLLECTOR
 3. EMITTER
 4. NO CONNECTION

 - COLLECTOR
 - BASE

Thermal Clad is a trademark of the Bergquist Company.

ON Semiconductor and War are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.