

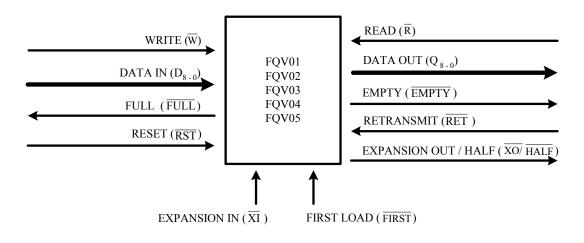
3.3 Volt Asynchronous x9 First-In/First-Out Queue

Memory Configuration	Device
8,192 x 9	FQV05
4,096 x 9	FQV04
2,048 x 9	FQV03
1,024 x 9	FQV02
512 x 9	FQV01

Key Features:

- Industry leading First-In/First-Out Queues (up to 50MHz)
- Independent Write and Read cycle time
- Asynchronous and simultaneous read and write
- 3.3V power supply
- Fully expandable in both word depth and width
- Retransmit capability
- Full, Empty, and Half Full flag indicators
- Available packages: 32-pin Plastic Lead Chip Carrier (PLCC)
- (0°C to 70°C) Commercial operating temperature available for access time of 15ns and above
- (-40°C to 85°C) Industrial operating temperature available for access time of 15ns and above
- Pin-to-pin compatible with IDT (72V01, 72V02, 72V03, 72V04, 72V05)

Product Description:


HBA's FlexQ[™] Async FIFO offers industry leading 0.25um process technology and memory densities from 512 x 9 to 8,192 x 9. System designer has full flexibility of implementing deeper and wider queues using the depth and width expansion features. Full and Empty indicators allow easy handshaking between transmitters and receivers.

Independent Write and Read controls provide rate-matching capability. System designer can re-read data from the starting position by using Retransmit ($\overline{\text{RET}}$). Retransmit allows reset of the read pointer to its initial position. Half Full flag ($\overline{\text{HALF}}$) is available in the single device mode and width expansion mode, but not in depth expansion mode.

These FlexQTM Async devices have low power consumption, hence minimizing system power requirements. In addition, industry standard 32 - pin PLCC are offered to save system board space.

These queues are ideal for applications such as data communication, telecommunication, graphics, multiprocessing, test equipment, medical systems, network switching, etc.

Block Diagram of Single Aynchronous Queue 8,192 x 9 / 4,096 x 9 / 2,048 x 9 / 1,024 x 9 / 512 x 9

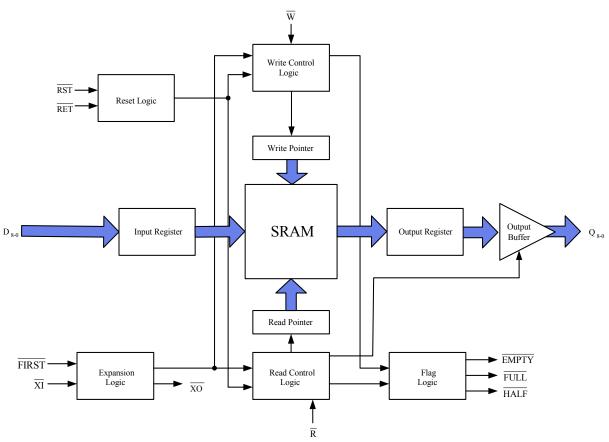
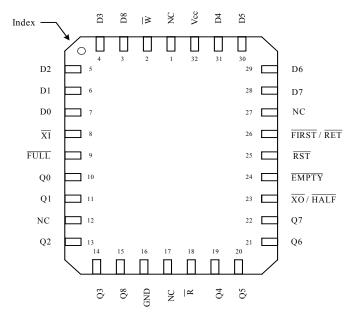



Figure 2. Device Architecture

PLCC - 32 (Drw No: J-01A; Order code: J)

Top View

Figure 3. Device Pin-Out

Pin #	Symbol	Name	Input/ Output	Description
25	RST	Reset	Input	Reset is required to initialize Write and Read pointers to the first position of the queue by setting \overline{RST} low. \overline{FULL} will go high; \overline{EMPTY} will go low.
2	W	Write	Input	Writes data into queue during low to high transitions of \overline{W} if queue is not full yet.
3, 4, 5, 6, 7, 28, 29, 30, 31	D ₈₋₀	Data Inputs	Input	9 - bit wide input data bus.
18	R	Read	Input	Reads data from queue during high to low transitions of \overline{R} if queue is not empty.
10, 11, 13, 14, 15, 19, 20, 21, 22	Q ₈₋₀	Data Output	Output	9 - bit wide output data bus.
26	FIRST / RET	First Load/ Retransmit	Input	$\overline{\text{FIRST}}$ / $\overline{\text{RET}}$ is used differently depending on mode. In Depth Expansion Mode, the pin is grounded to indicate first load. In Single Device Mode, the pin acts as retransmit.
8	XI	Expansion In	Input	\overline{XI} is used to indicate operations in different modes. When the pin is grounded, it indicates an operation in the Single Device Mode. When it is tied to Vcc, it indicates an operation in Depth Expansion Mode.
9	FULL	Full Flag	Output	Queue is full when $\overline{\text{FULL}}$ goes low. This prohibits further writes into the queue. The assertion of $\overline{\text{FULL}}$ is synchronous to the falling edge of $\overline{\text{W}}$ and the deassertion is synchronous to the rising edge of $\overline{\text{R}}$.
24	EMPTY	Empty Flag	Output	Queue is empty when $\overline{\text{EMPTY}}$ goes low. This prohibits further reads from the queue. The assertion of $\overline{\text{EMPTY}}$ is synchronous to the falling edge of $\overline{\text{R}}$ and the deassertion is synchronous to the rising edge of $\overline{\text{W}}$.
23	XO / HALF	Expansion Out / Half Full Flag	Output	$\overline{\text{XO}} / \overline{\text{HALF}}$ is used differently depending on mode. In Depth Expansion Mode, $\overline{\text{XI}}$ is connected to the previous device's $\overline{\text{XO}}$ pin. When the previous device has reached the last location of memory, this pin will send pulses to the next device in the Daisy Chain. In Single Device Mode, when $\overline{\text{XI}}$ is grounded, this pin indicates queue is half-full.
32	Vcc	Power	N/A	3.3V power supply.
16	GND	Ground	N/A	0V Ground.
1, 12, 17, 27	NC	No Connection	N/A	No connection.

Table 1. Pin Descriptions

Symbol	Rating	Com'l & Ind'l	Unit
Vterm	Terminal Voltage with respect to GND	-0.5 to +7	V
Tstg	Storage Temperature	-55 to +125	°C
Iout	DC Output Current	-50 to +50	mA

NOTES:

Absolute Max Ratings are for reference only. Permanent damage to the device may occur if extended period of operation is outside this range. Standard operation should fall within the Recommended Operating Conditions.

Table 2. Absolute Maximum Ratings

			FQV05, F	QV04, FQ	V03, FQV	02, FQV01	1	
		Commer	cial t _A = 15 35ns, 50ns		Industr	ial tA = 15r 35ns, 50ns		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Recommended O	perating Conditions			1		1		
Vcc	Supply Voltage Com'l/Ind'l	3.0	3.3	3.6	3.0	3.3	3.6	V
GND	Supply Voltage	0	0	0	0	0	0	V
VIH	Input High Voltage Com'l/Ind'l	2.0	-	-	2.0	-	-	V
VIL	Input Low Voltage Com'l/Ind'l	-	-	0.8	-	-	0.8	V
Та	Operating Temperature Commercial	0	-	70	0	-	70	°C
Та	Operating Temperature Industrial	-40	-	85	-40	-	85	°C
DC Electrical Cha	aracteristics							
ILI ⁽¹⁾	Input Leakage Current (any input)	-10	-	10	-10	-	10	μΑ
Ilo	Output Leakage Current	-10	-	10	-10	-	10	μΑ
Voh	Output Logic "1" Voltage, IOH=-2mA	2.4	-	-	2.4	-	-	V
Vol	Output Logic "0" Voltage, IOL = 8mA	-	-	0.4	-	-	0.4	V
Power Consumpti	ion							
Icc1 ^(2,3,4)	Active Power Supply Current	-	-	50	-	-	50	mA
$\operatorname{Icc2}^{(2,5)}$	Standby Current	-	-	5	-	-	5	mA
Capacitance at 1.	OMHz Ambient Temperature	(25°C)						
Symbol	Parameter		Con	ditions		Ν	lax.	Unit
CIN ⁽⁶⁾	Input Capacitance	VIN= 0V 8		8	pF			
Cout ⁽⁶⁾	Output Capacitance		Vot	JT=0V			8	pF

NOTES:

1. Measurement with 0.4<=VIN<=Vcc

2. Tested with outputs open (IOUT=0)

3. Tested at f=20MHz

5. All inputs = Vcc-0.2V or GND+0.2V and ($\overline{R}=\overline{W}=\overline{RST}=\overline{FIRST}/\overline{RET}=VIH$)

6. Design simulated, not tested.

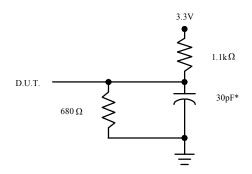
Table 3. DC Specifications

^{4.} Typical Icc1=15+2*fs+0.02*CL*fc (in mA) with Vcc=3.3V, tA=25°C, fs=WCLK frequency=RCLK frequency (in MHz, using TTL levels), data switching at fs/2, CL=Capacitive load (in PF)

	Commercial & Industrial									
		FQV FQV FQV	04-15 03-15 02-15 01-15 05-15	FQV FQV FQV	05-25 04-25 03-25 02-25 01-25	FQV FQV FQV	05-35 04-35 03-35 02-35 01-35	FQV FQV FQV	05-50 04-50 03-50 02-50 01-50	
Symbol	Parameter	Min.	Max	Min.	Max	Min.	Max	Min.	Max	Unit
fs	Shift Frequency	-	40	-	28.5	-	22.2	-	15	MHz
trc	Read Cycle Time	25	-	35	-	45	-	65	-	ns
tA	Access Time	-	15	-	25	-	35	-	50	ns
trr	Read Recovery Time	10	-	10	-	10	-	15	-	ns
trpw	Read Pulse Width	15	-	25	-	35	-	50	-	ns
t rlz	Read Pulse Low to Data Bus at Low Z $^{(1)}$	3	-	3	-	3	-	3	-	ns
twlz	Write Pulse High to Data Bus at Low Z $^{(1,2)}$	5	-	5	-	5	-	5	-	ns
tov	Data Valid from Read Pulse High	5	-	5	-	5	-	5	-	ns
t rhz	Read Pulse High to Data Bus at High Z $^{(1)}$	-	15	-	18	-	20	-	30	ns
twc	Write Cycle Time	25	-	35	-	45	-	65	-	ns
twpw	Write Pulse Width	15	-	25	-	35	-	50	-	ns
twr	Write Recovery Time	10	-	10	-	10	-	15	-	ns
tos	Data Set-up Time	11	-	15	-	18	-	30	-	ns
tdн	Data Hold Time	0	-	0	-	0	-	5	-	ns
t rstc	Reset Cycle Time	25	-	35	-	45	-	65	-	ns
trst	Reset Pulse Width	15	-	25	-	35	-	50	-	ns
trsts	Reset Set-up Time ⁽¹⁾	15	-	25	-	35	-	50	-	ns
trstr	Reset Recovery Time	10	-	10	-	10	-	15	-	ns
t retc	Retransmit Cycle Time	25	-	35	-	45	-	65	-	ns
t ret	Retransmit Pulse Width	15	-	25	-	35	-	50	-	ns
t rets	Retransmit Set-up Time ⁽¹⁾	15	-	25	-	35	-	50	-	ns
t retr	Retransmit Recovery Time	10	-	10	-	10	-	15	-	ns
tefl	Reset to Empty Flag Low	-	25	-	35	-	45	-	65	ns
thfh, tffh	Reset to Half-Full and Full Flag High	-	25	-	35	-	45	-	65	ns
t retf	Retransmit Low to Flags Valid	-	25	-	35	-	45	-	65	ns
t rempty	Read Low to Empty Flag Low	-	15	-	25	-	30	-	45	ns
t rfull	Read High to Full Flag High	-	15	-	25	-	30	-	45	ns
t rpe	Read Pulse Width after Empty Flag High	15	-	25	-	35	-	50	-	ns
twempty	Write High to Empty Flag High	-	15	-	25	-	30	-	45	ns
twfull	Write Low to Full Flag Low	-	15	-	25	-	30	-	45	ns
twhalf	Write Low to Half-Full Flag Low	-	25	-	35	-	45	-	65	ns
trhalf	Read High to Half-Full Flag High	-	25	-	35	-	45	-	65	ns
twpf	Write Pulse Width after Full Flag High	15	-	25	-	35	-	50	-	ns
txol	Read/Write to XO Low	-	15	-	25	-	35	-	50	ns
tхон	Read/Write to XO High	-	15	-	25	-	35	-	50	ns
txı	XI Pulse Width	15	-	25	-	35	-	50	-	ns
txir	XI Recovery Time	10	-	10	-	10	-	10	-	ns
txis	XT Set-up Time	10	-	10	-	10	-	15	-	ns
	AT bet-up Time	-		-	1	-	1	-	1	

NOTES:

Design simulated, not tested. Only applies to read data flow-through mode. 1. 2.


Table 4. AC Electrical Characteristics

NOTES: 3FA09B

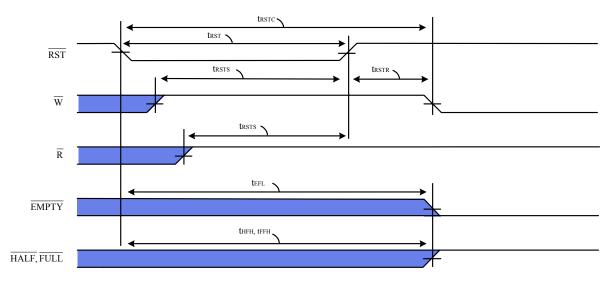

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Refer to Figure 4

Table	5.	AC	Test	Con	dition
-------	----	----	------	-----	--------

Figure 4. Output Load *Includes jig and scope capacitances.

Timing Diagrams

NOTES:

- 1. EMPTY, FULL, and HALF may change status during Reset, but are valid at tRSTC.
- 2. \overline{W} and $\overline{R} = VIH$ near rising edge of \overline{RST} .

Diagram 1. Reset Timing

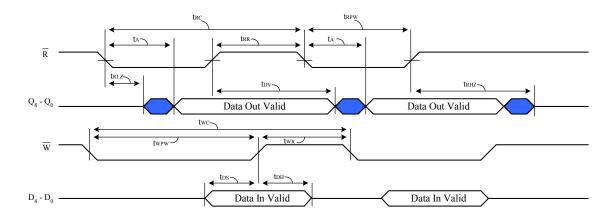


Diagram 2. Asynchronous Write and Read Operation

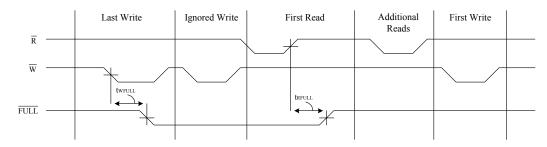
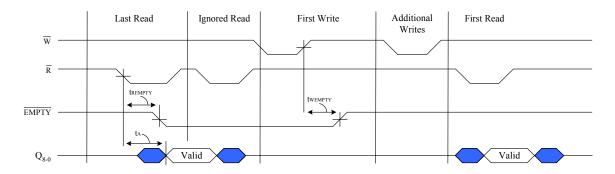
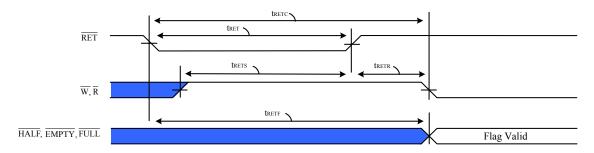
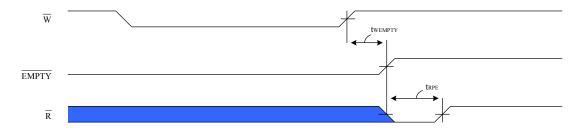
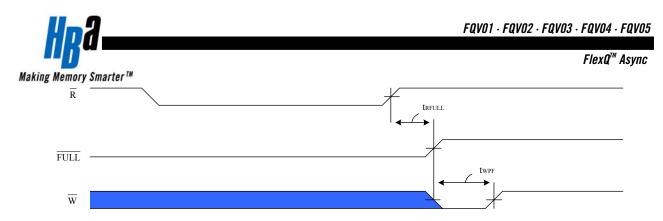
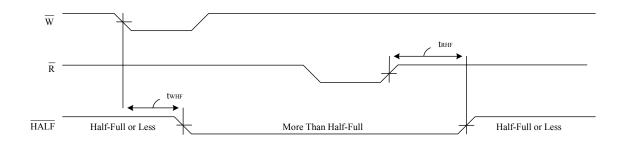
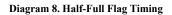


Diagram 3. Full Flag From Last Write to First Read


Diagram 4. Empty Flag From Last Read to First Write


Diagram 5. Retransmit



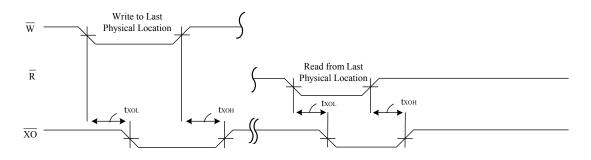


Diagram 9. Expansion Out

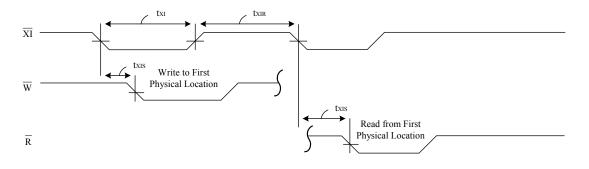


Diagram 10. Expansion In

Operating Modes

Single Device Mode: When application requirements are for 256/512/1,024/2,048/4,096/8,192 words or less, a single device may be used. These devices are in Single Device Mode when Expansion In (\overline{XI}) is grounded.

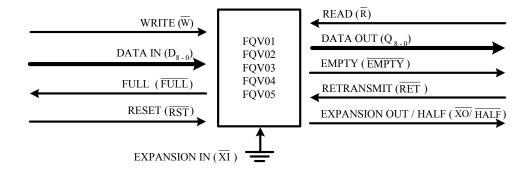


Figure 5. Single Device Mode

Depth Expansion Mode: When application requirements are greater than 256/512/1,024/2,048/4,096/8,192 words, multiple devices may be used for Depth Expansion. These devices are in Depth Expansion Mode when the following conditions are met:

- 1. The first device's First Load (FIRST) pin must be grounded.
- 2. All other devices' First Load (FIRST) pin must be tied to HIGH
- 3. All devices' Expansion Out (\overline{XO}) pin must be tied to the next devices' Expansion In (\overline{XI}) pin.
- 4. Retransmit (RET) and Half-Full Flag (HALF) are non-functional in Depth Expansion Mode.
- 5. An external logic is required to generate a composite Full Flag (FULL) and Empty Flag (EMPTY). This requires the ORing of all Empty and Full Flags.

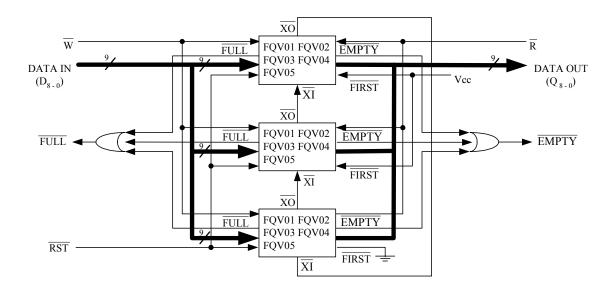


Figure 6. Depth Expansion Mode

Usage Modes

Width Expansion Mode: When applications require increased word width, multiple devices may be used for Width Expansion Mode. These devices are in Width Expansion Mode when the same signals from multiple devices are connected. Any word width may be achieved by connecting additional devices. Status flags are functional for any one device.

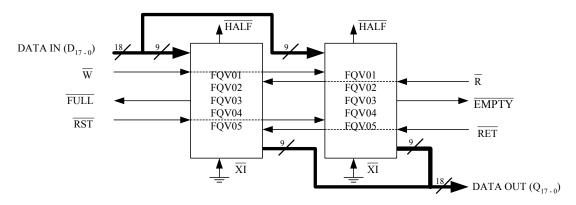


Figure 7. Width Expansion Mode

Bidirectional Mode: When applications require data buffering between two systems that are capable of Read and Write operations, a pair of devices may be used for Bidirectional Mode. Both Depth Expansion and Width Expansion may be used in this mode.

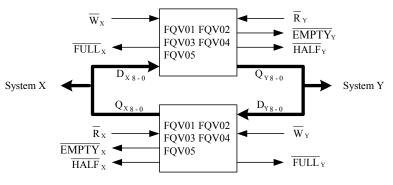
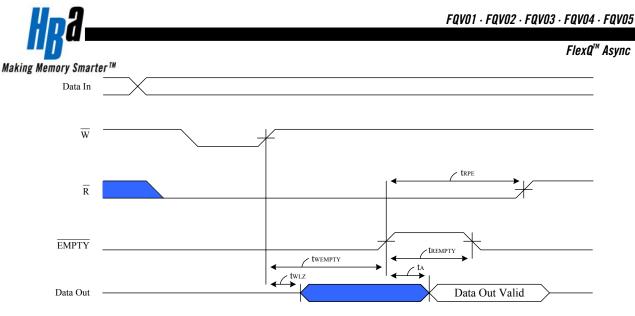
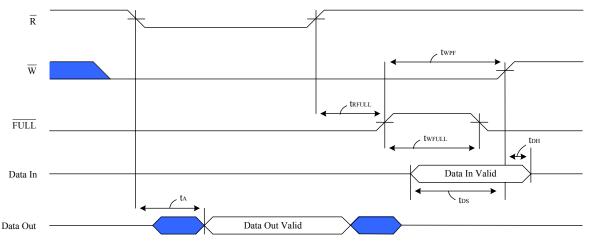




Figure 8. Bidirectional Mode

Data Flow-Through Mode: There are two types of flow-through modes, read flow-through and write flow-through. In the read flow-through mode, the device allows a single word to be read after one word of data has been written into an empty FIFO. The data is enabled on the bus after the rising edge of \overline{W} , and remains on the bus until \overline{R} goes from Low to High. Then the bus goes into a three-state mode. EMPTY will have a pulse showing temporary deassertion and then would be asserted. In the write flow-through mode, the device allows a single word to be written after one word of data has been read from a full FIFO. \overline{R} causes FULL to be deasserted but a Low \overline{W} causes it to be asserted again for the new data word. The new word goes into the FIFO on the rising edge of \overline{W} . \overline{W} must be toggled when FULL is not asserted to write new data into the FIFO and to increment the write pointer.

Compound Expansion Mode: Compound Expansion Mode is a combination of Depth and Width Expansion Modes to achieve large FIFO arrays.

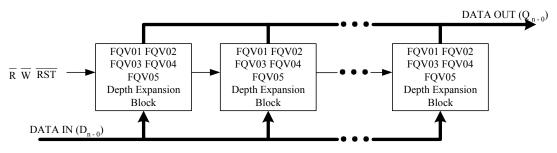


Figure 9. Compound Expansion Mode

Order Information:

HBA Device Family	Device Type	Power	Speed (ns)*	Package**	Temperature Range
<u>XX</u>	<u>XX</u>	<u>X</u>	<u>XX</u>	<u>X</u>	<u>X</u>
FQV	05 (8,192 x 9)	Low	15 – 40 MHz	J	Blank – Commercial ($0^{\circ}C$ to $70^{\circ}C$)
	04 (4,096 x 9)		25 – 29 MHz		I - Industrial (-40° to 85°C)
	03 (2,048 x 9)		35 – 22 MHz		
	02 (1,024 x 9)		50 – 15 MHz		
	01 (512 x 9)				

*Speed – Slower speeds available upon request. **Package – 32 - pin Plastic Lead Chip Carrier (PLCC)

Example:

FQV05L15J	(8k x 9, 15ns, PLCC, Commercial temp)
FQV01L25PFI	(512 x 9, 25ns, PLCC, Industrial temp)

USA

2107 North First Street, Suite 415 San Jose, CA 95131, USA www.hba.com

Tel: 408.453.8885 Fax: 408.453.8886

Taiwan

No. 81, Suite 8F-9, Shui-Lee Rd. Hsinchu, Taiwan, R.O.C. www.hba.com

Tel: 886.3.516.9118 Fax: 886.3.516.9181

MAY 2003