PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT μ PD44321181, 44321321, 44321361

32M-BIT ZEROSB[™] SRAM FLOW THROUGH OPERATION

Description

The μ PD44321181 is a 2,097,152-word by 18-bit, the μ PD44321321 is a 1,048,576-word by 32-bit and the μ PD44321361 is a 1,048,576-word by 36-bit ZEROSB static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The μ PD44321181, μ PD44321321 and μ PD44321361 are optimized to eliminate dead cycles for read to write, or write to read transitions. These ZEROSB static RAMs integrate unique synchronous peripheral circuitry, 2-bit burst counter and output buffer as well as SRAM core. All input registers are controlled by a positive edge of the single clock input (CLK).

The μ PD44321181, μ PD44321321 and μ PD44321361 are suitable for applications which require synchronous operation, high speed, low voltage, high density and wide bit configuration, such as buffer memory.

ZZ has to be set LOW at the normal operation. When ZZ is set HIGH, the SRAM enters Power Down State ("Sleep"). In the "Sleep" state, the SRAM internal state is preserved. When ZZ is set LOW again, the SRAM resumes normal operation.

The μ PD44321181, μ PD44321321 and μ PD44321361 are packaged in 100-pin PLASTIC LQFP with a 1.4 mm package thickness or 165-pin PLASTIC FBGA for high density and low capacitive loading.

Features

★ • Low voltage core supply: VDD = 3.3 ± 0.165V (-A65, -A75, -A85, -A65Y, -A75Y, -A85Y)

VDD = 2.5 ± 0.125V (-C75, -C85, -C75Y, -C85Y)

- Synchronous operation
- Operating temperature : T_A = 0 to 70 °C (-A65, -A75, -A85, -C75, -C85)

T_A = -40 to +85 °C (-A65Y, -A75Y, -A85Y, -C75Y, -C85Y)

- 100 percent bus utilization
- Internally self-timed write control
- Burst read / write : Interleaved burst and linear burst sequence
- Fully registered inputs and outputs for flow through operation
- All registers triggered off positive clock edge
- 3.3V or 2.5V LVTTL Compatible : All inputs and outputs
- Fast clock access time : 6.5 ns (133 MHz), 7.5 ns (117 MHz), 8.5 ns (100 MHz)
- Asynchronous output enable : /G
- Burst sequence selectable : MODE
- Sleep mode : ZZ (ZZ = Open or Low : Normal operation)
- Separate byte write enable : /BW1 to /BW4 (µPD44321321 and µPD44321361)

/BW1 and /BW2 (µPD44321181)

- Three chip enables for easy depth expansion
- Common I/O using three state outputs

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.

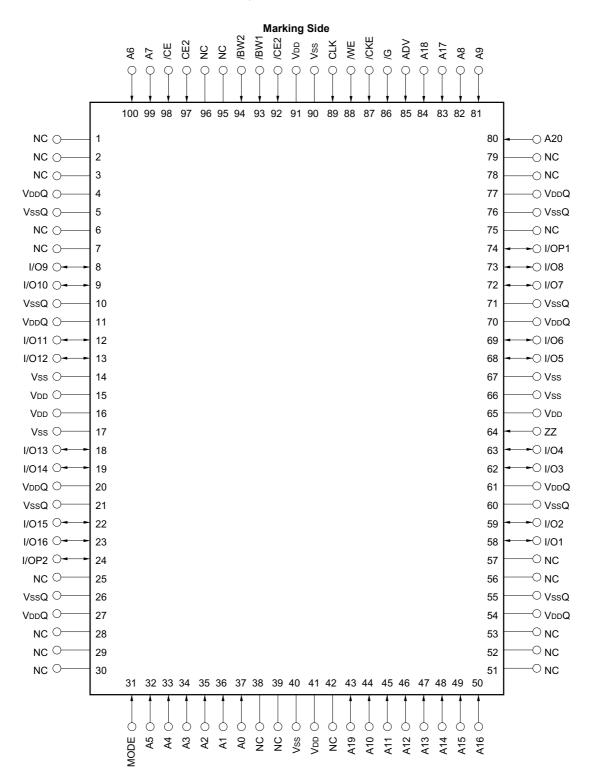
The mark **★** shows major revised points.

* Ordering Information

(1/2)

Part number	Access Time ns	Clock Frequency MHz	Core Supply Voltage V	I/O Interface	Operating Temperature °C	Package
μPD44321181GF-A65	6.5	133	3.3 ± 0.165	3.3 V or	0 to 70	100-pin PLASTIC LQFP
μPD44321181GF-A75	7.5	117		2.5 V LVTTL		(14 x 20)
μPD44321181GF-A85	8.5	100				
μPD44321321GF-A65	6.5	133				
μPD44321321GF-A75	7.5	117				
μPD44321321GF-A85	8.5	100				
μPD44321361GF-A65	6.5	133				
μPD44321361GF-A75	7.5	117				
μPD44321361GF-A85	8.5	100				
μPD44321181GF-C75	7.5	117	2.5 ± 0.125	2.5 V LVTTL		
μPD44321181GF-C85	8.5	100				
μPD44321321GF-C75	7.5	117				
μPD44321321GF-C85	8.5	100				
μPD44321361GF-C75	7.5	117				
μPD44321361GF-C85	8.5	100				
μPD44321181F1-A65-FQ2 ^{Note}	6.5	133	3.3 ± 0.165	3.3 V or		165-pin PLASTIC FBGA
μPD44321181F1-A75-FQ2 ^{Note}	7.5	117		2.5 V LVTTL		(15 x 17)
μPD44321181F1-A85-FQ2 ^{Note}	8.5	100				
μPD44321321F1-A65-FQ2 ^{Note}	6.5	133				
μPD44321321F1-A75-FQ2 ^{Note}	7.5	117				
μPD44321321F1-A85-FQ2 ^{Note}	8.5	100				
μPD44321361F1-A65-FQ2 ^{Note}	6.5	133				
μPD44321361F1-A75-FQ2 ^{Note}	7.5	117				
μPD44321361F1-A85-FQ2 ^{Note}	8.5	100				
μPD44321181F1-C75-FQ2 ^{Note}	7.5	117	2.5 ± 0.125	2.5 V LVTTL		
μPD44321181F1-C85-FQ2 ^{Note}	8.5	100				
μPD44321321F1-C75-FQ2 ^{Note}	7.5	117				
μPD44321321F1-C85-FQ2 ^{Note}	8.5	100				
μPD44321361F1-C75-FQ2 ^{Note}	7.5	117				
μPD44321361F1-C85-FQ2 ^{Note}	8.5	100				

Note Under development

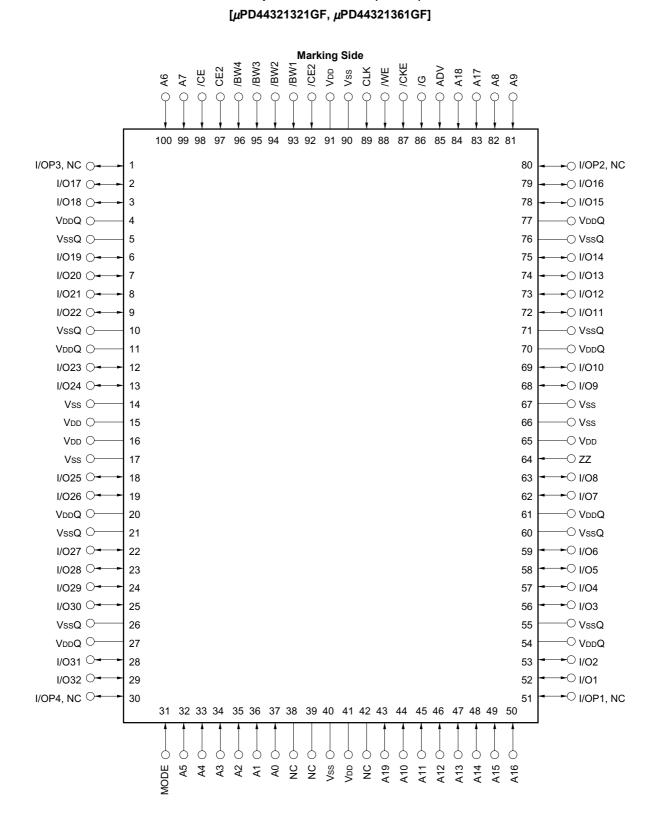

						(2/2)
Part number	Access Time ns	Clock Frequency MHz	Core Supply Voltage V	I/O Interface	Operating Temperature °C	Package
μPD44321181GF-A65Y	6.5	133	3.3 ± 0.165	3.3 V or	-40 to +85	100-pin PLASTIC LQFP
μPD44321181GF-A75Y	7.5	117		2.5 V LVTTL		(14 x 20)
μPD44321181GF-A85Y	8.5	100				
μPD44321321GF-A65Y	6.5	133				
μPD44321321GF-A75Y	7.5	117				
μPD44321321GF-A85Y	8.5	100				
μPD44321361GF-A65Y	6.5	133				
μPD44321361GF-A75Y	7.5	117				
μPD44321361GF-A85Y	8.5	100				
μPD44321181GF-C75Y	7.5	117	2.5 ± 0.125	2.5 V LVTTL		
μPD44321181GF-C85Y	8.5	100				
μPD44321321GF-C75Y	7.5	117				
μPD44321321GF-C85Y	8.5	100				
μPD44321361GF-C75Y	7.5	117				
μPD44321361GF-C85Y	8.5	100				
μPD44321181F1-A65Y-FQ2 ^{Note}	6.5	133	3.3 ± 0.165	3.3 V or		165-pin PLASTIC FBGA
μPD44321181F1-A75Y-FQ2 ^{Note}	7.5	117		2.5 V LVTTL		(15 x 17)
μPD44321181F1-A85Y-FQ2 ^{Note}	8.5	100				
μPD44321321F1-A65Y-FQ2 ^{Note}	6.5	133				
μPD44321321F1-A75Y-FQ2 ^{Note}	7.5	117				
μPD44321321F1-A85Y-FQ2 ^{Note}	8.5	100				
μPD44321361F1-A65Y-FQ2 ^{Note}	6.5	133				
μPD44321361F1-A75Y-FQ2 ^{Note}	7.5	117				
μPD44321361F1-A85Y-FQ2 ^{Note}	8.5	100				
μPD44321181F1-C75Y-FQ2 ^{Note}	7.5	117	2.5 ± 0.125	2.5 V LVTTL		
μPD44321181F1-C85Y-FQ2 ^{Note}	8.5	100				
μPD44321321F1-C75Y-FQ2 ^{Note}	7.5	117				
μPD44321321F1-C85Y-FQ2 ^{Note}	8.5	100				
μPD44321361F1-C75Y-FQ2 ^{Note}	7.5	117				
µPD44321361F1-C85Y-FQ2 ^{Note}	8.5	100				

Note Under development

* Pin Configurations

/xxx indicates active low signal.

100-pin PLASTIC LQFP (14 × 20) [μPD44321181GF]


Remark Refer to Package Drawing for the 1-pin index mark.

Preliminary Data Sheet M15958EJ1V0DS

★ Pin Identifications

[µPD44321181GF]

Symbol	Pin No.	Description
A0 to A20	37, 36, 35, 34, 33, 32, 100, 99, 82, 81,	Synchronous Address Input
44, 45, 46, 47, 48, 49, 50, 83, 84, 43, 80		
I/O1 to I/O16	58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13	, Synchronous Data In,
	18, 19, 22, 23	Synchronous / Asynchronous Data Out
I/OP1	74	Synchronous Data In (Parity),
I/OP2	24	Synchronous / Asynchronous Data Out (Parity)
ADV	85	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	98, 97, 92	Synchronous Chip Enable Input
/WE	88	Synchronous Write Enable Input
/BW1, /BW2	93, 94	Synchronous Byte Write Enable Input
/G	86	Asynchronous Output Enable Input
CLK	89	Clock Input
/CKE	87	Synchronous Clock Enable Input
MODE	31	Asynchronous Burst Sequence Select Input
		Have to tied to V_{DD} or V_{SS} during normal operation
ZZ	64	Asynchronous Power Down State Input
Vdd	15, 16, 41, 65, 91	Power Supply
Vss	14, 17, 40, 66, 67, 90	Ground
VddQ	4, 11, 20, 27, 54, 61, 70, 77	Output Buffer Power Supply
VssQ	5, 10, 21, 26, 55, 60, 71, 76	Output Buffer Ground
NC	1, 2, 3, 6, 7, 25, 28, 29, 30, 38, 39, 42,	No Connection
	51, 52, 53, 56, 57, 75, 78, 79, 95, 96	

100-pin PLASTIC LQFP (14 × 20)

Remark Refer to Package Drawing for the 1-pin index mark.

Preliminary Data Sheet M15958EJ1V0DS

Symbol	Pin No.	Description
A0 to A19	37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44,	Synchronous Address Input
	45, 46, 47, 48, 49, 50, 83, 84, 43	
I/O1 to I/O32	52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72,	Synchronous Data In,
	73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13,	Synchronous / Asynchronous Data Out
	18, 19, 22, 23, 24, 25, 28, 29	
I/OP1, NC Note	51	Synchronous Data In (Parity),
I/OP2, NC Note	80	Synchronous / Asynchronous Data Out (Parity)
I/OP3, NC Note	1	
I/OP4, NC Note	30	
ADV	85	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	98, 97, 92	Synchronous Chip Enable Input
/WE	88	Synchronous Write Enable Input
/BW1 to /BW4	93, 94, 95, 96	Synchronous Byte Write Enable Input
/G	86	Asynchronous Output Enable Input
CLK	89	Clock Input
/CKE	87	Synchronous Clock Enable Input
MODE	31	Asynchronous Burst Sequence Select Input
		Have to tied to V_{DD} or V_{SS} during normal operation
ZZ	64	Asynchronous Power Down State Input
Vdd	15, 16, 41, 65, 91	Power Supply
Vss	14, 17, 40, 66, 67, 90	Ground
VddQ	4, 11, 20, 27, 54, 61, 70, 77	Output Buffer Power Supply
VssQ	5, 10, 21, 26, 55, 60, 71, 76	Output Buffer Ground
NC	38, 39, 42	No Connection

Note NC (No Connection) is used in the μ PD44321321GF.

I/OP1 to I/OP4 are used in the μ PD44321361GF.

 \star

	Top View										
_	1	2	3	4	5	6	7	8	9	10	11
А	NC	A7	/CE	/BW2	NC	/CE2	/CKE	ADV	A17	A9	A20
в	NC	A6	CE2	NC	/BW1	CLK	/WE	/G	A18	A8	NC
С	NC	NC	VddQ	Vss	Vss	Vss	Vss	Vss	VddQ	NC	I/OP1
D	NC	I/O9	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	NC	I/O8
Е	NC	I/O10	VddQ	VDD	Vss	Vss	Vss	Vdd	VddQ	NC	I/07
F	NC	I/O11	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	NC	I/O6
G	NC	I/O12	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	NC	I/O5
н	NC	VDD	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	ZZ
J	I/O13	NC	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	I/O4	NC
к	I/O14	NC	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	I/O3	NC
L	I/O15	NC	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	I/O2	NC
М	I/O16	NC	VddQ	VDD	Vss	Vss	Vss	VDD	VddQ	I/O1	NC
Ν	I/OP2	NC	VddQ	Vss	NC	NC	NC	Vss	VddQ	NC	NC
Ρ	NC	NC	A4	A12	TDI	A1	TDO	A19	A13	A14	NC
R	MODE	A5	A3	A2	TMS	A0	ТСК	A10	A11	A15	A16

165-pin PLASTIC FBGA (15 x 17) [μPD44321181F1]

Remark Refer to **Package Drawings** for the index mark.

★ [µPD44321181F1]

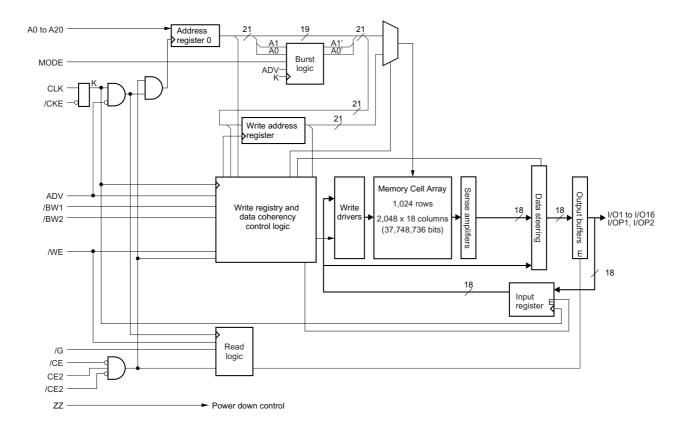
Symbol	Pin No.	Description		
A0 to A20	6R, 6P, 4R, 3R, 3P, 2R, 2B, 2A, 10B, 10A, 8R, 9R,	Synchronous Address Input		
	4P, 9P, 10P, 10R, 11R, 9A, 9B, 8P, 11A			
I/O1 to I/O16	10M, 10L, 10K, 10J, 11G, 11F, 11E, 11D, 2D, 2E,	Synchronous Data In,		
	2F, 2G, 1J, 1K, 1L, 1M	Synchronous / Asynchronous Data Out		
I/OP1	11C	Synchronous Data In (Parity),		
I/OP2	1N	Synchronous / Asynchronous Data Out (Parity)		
ADV	8A	Synchronous Address Load / Advance Input		
/CE, CE2, /CE2	3A, 3B, 6A	Synchronous Chip Enable Input		
/WE	7B	Synchronous Write Enable Input		
/BW1, /BW2	5B, 4A	Synchronous Byte Write Enable Input		
/G	8B	Asynchronous Output Enable Input		
CLK	6B	Clock Input		
/CKE	7A	Synchronous Clock Enable Input		
MODE	1R	Asynchronous Burst Sequence Select Input		
		Have to tied to V_{DD} or V_{SS} during normal operation		
ZZ	11H	Asynchronous Power Down State Input		
Vdd	2H, 4D, 4E, 4F, 4G, 4H, 4J, 4K, 4L, 4M, 8D, 8E,	Power Supply		
	8F, 8G, 8H, 8J, 8K, 8L, 8M			
Vss	4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M,	Ground		
	6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D,			
	7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N			
VDDQ	3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D,	Output Buffer Power Supply		
	9E, 9F, 9G, 9J, 9K, 9L, 9M, 9N			
NC	1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1P, 2C, 2J, 2K,	No Connection		
	2L, 2M, 2N, 2P, 3H, 4B, 5A, 5N, 6N, 7N, 9H, 10C,			
	10D, 10E, 10F, 10G, 10H, 10N, 11B, 11J, 11K,			
	11L, 11M, 11N, 11P			
TMS	5R	Test Mode Select (JTAG)		
TDI	5P	Test Data Input (JTAG)		
ТСК	7R	Test Clock Input (JTAG)		
TDO	7P	Test Data Output (JTAG)		

	Top View										
	1	2	3	4	5	6	7	8	9	10	11
А	NC	A7	/CE	/BW3	/BW2	/CE2	/CKE	ADV	A17	A9	NC
В	NC	A6	CE2	/BW4	/BW1	CLK	/WE	/G	A18	A8	NC
С	I/OP3,NC	NC	VddQ	Vss	Vss	Vss	Vss	Vss	VddQ	NC	I/OP2,NC
D	I/O17	I/O21	VddQ	Vdd	Vss	Vss	Vss	VDD	VddQ	I/O16	I/O12
Е	I/O18	I/O22	VddQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O15	I/O11
F	I/O19	I/O23	VddQ	Vdd	Vss	Vss	Vss	VDD	VddQ	I/O14	I/O10
G	I/O20	I/O24	VddQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O13	I/O9
н	NC	VDD	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	zz
J	I/O25	I/O29	VddQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O8	I/O4
К	I/O26	I/O30	VddQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/07	I/O3
L	I/O27	I/O31	VddQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O6	I/O2
М	I/O28	I/O32	VddQ	Vdd	Vss	Vss	Vss	VDD	VDDQ	I/O5	I/O1
Ν	I/OP4,NC	NC	VddQ	Vss	NC	NC	NC	Vss	VDDQ	NC	I/OP1,NC
Ρ	NC	NC	A4	A12	TDI	A1	TDO	A19	A13	A14	NC
R	MODE	A5	A3	A2	TMS	A0	тск	A10	A11	A15	A16

165-pin PLASTIC FBGA (15 x 17) [μPD44321321F1, μPD44321361F1]

Remark Refer to Package Drawings for the index mark.

Symbol	Pin No.	Description		
A0 to A19	6R, 6P, 4R, 3R, 3P, 2R, 2B, 2A, 10B, 10A, 8R, 9R,	Synchronous Address Input		
	4P, 9P, 10P, 10R, 11R, 9A, 9B, 8P			
I/O1 to I/O32	11M, 11L, 11K, 11J, 10M, 10L, 10K, 10J, 11G, 11F,	Synchronous Data In,		
	11E, 11D, 10G, 10F, 10E, 10D, 1D, 1E, 1F, 1G, 2D,	Synchronous / Asynchronous Data Out		
	2E, 2F, 2G,1J, 1K, 1L, 1M, 2J, 2K, 2L, 2M			
I/OP1, NC Note	11N	Synchronous Data In (Parity),		
I/OP2, NC Note	11C	Synchronous / Asynchronous Data Out (Parity)		
I/OP3, NC Note	1C			
I/OP4, NC Note	1N			
ADV	8A	Synchronous Address Load / Advance Input		
/CE, CE2, /CE2	3A, 3B, 6A	Synchronous Chip Enable Input		
/WE	7B	Synchronous Write Enable Input		
/BW1 to /BW4	5B, 5A, 4A, 4B	Synchronous Byte Write Enable Input		
/G	8B	Asynchronous Output Enable Input		
CLK	6B	Clock Input		
/CKE	7A	Synchronous Clock Enable Input		
MODE	1R	Asynchronous Burst Sequence Select Input		
		Have to tied to V_{DD} or V_{SS} during normal operation		
ZZ	11H	Asynchronous Power Down State Input		
Vdd	2H, 4D, 4E, 4F, 4G, 4H, 4J, 4K, 4L, 4M, 8D, 8E, 8F,	Power Supply		
	8G, 8H, 8J, 8K, 8L, 8M			
Vss	4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M,	Ground		
	6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D,			
	7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N			
VddQ	3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D, 9E,	Output Buffer Power Supply		
	9F, 9G, 9J, 9K, 9L, 9M, 9N			
NC	1A, 1B, 1H, 1P, 2C, 2N, 2P, 3H, 5N, 6N, 7N, 9H,	No Connection		
	10C, 10H, 10N, 11A, 11B, 11P			
TMS	5R	Test Mode Select (JTAG)		
TDI	5P	Test Data Input (JTAG)		
тск	7R	Test Clock Input (JTAG)		
TDO	7P	Test Data Output (JTAG)		


[*µ*PD44321321GF, *µ*PD44321361GF]

Note NC (No Connection) is used in the μ PD44321321GF.

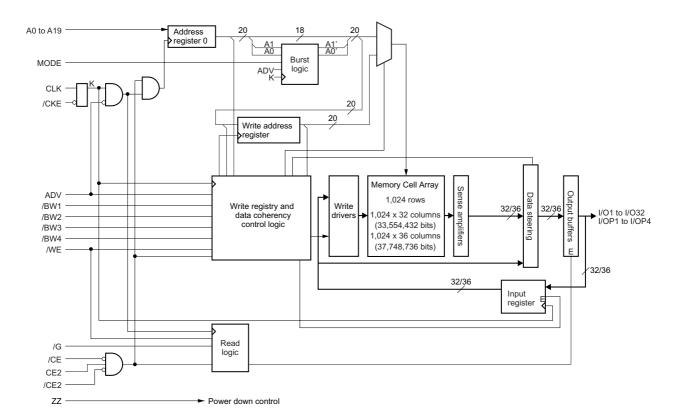
I/OP1 to I/OP4 are used in the μ PD44321361GF.

Block Diagrams

★ [μPD44321181]

Burst Sequence

★ [µPD44321181]


Interleaved Burst Sequence Table (MODE = VDD)

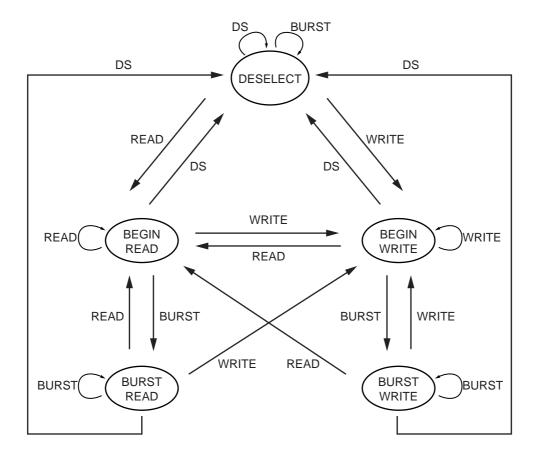
External Address	A20 to A2, A1, A0
1st Burst Address	A20 to A2, A1, /A0
2nd Burst Address	A20 to A2, /A1, A0
3rd Burst Address	A20 to A2, /A1, /A0

Linear Burst Sequence Table (MODE = Vss)

External Address	A20 to A2, 0, 0	A20 to A2, 0, 1	A20 to A2, 1, 0	A20 to A2, 1, 1
1st Burst Address	A20 to A2, 0, 1	A20 to A2, 1, 0	A20 to A2, 1, 1	A20 to A2, 0, 0
2nd Burst Address	A20 to A2, 1, 0	A20 to A2, 1, 1	A20 to A2, 0, 0	A20 to A2, 0, 1
3rd Burst Address	A20 to A2, 1, 1	A20 to A2, 0, 0	A20 to A2, 0, 1	A20 to A2, 1, 0

[μPD44321321, μPD44321361]

[μPD44321321, μPD44321361]


Interleaved Burst Sequence Table (MODE = VDD)

External Address	A19 to A2, A1, A0		
1st Burst Address	A19 to A2, A1, /A0		
2nd Burst Address	A19 to A2, /A1, A0		
3rd Burst Address	A19 to A2, /A1, /A0		

Linear Burst Sequence Table (MODE = Vss)

External Address	A19 to A2, 0, 0	A19 to A2, 0, 1	A19 to A2, 1, 0	A19 to A2, 1, 1
1st Burst Address	A19 to A2, 0, 1	A19 to A2, 1, 0	A19 to A2, 1, 1	A19 to A2, 0, 0
2nd Burst Address	A19 to A2, 1, 0	A19 to A2, 1, 1	A19 to A2, 0, 0	A19 to A2, 0, 1
3rd Burst Address	A19 to A2, 1, 1	A19 to A2, 0, 0	A19 to A2, 0, 1	A19 to A2, 1, 0

State Diagram

Command	Operation
DS	Deselect
Read	New Read
Write	New Write
Burst	Burst Read, Burst Write or Continue Deselect

Remarks 1. States change on the rising edge of the clock.

2. A Stall or Ignore Clock Edge cycle is not shown in the above diagram. This is because /CKE HIGH only blocks the clock (CLK) input and does not change the state of the device.

Asynchronous Truth Table

Operation	/G	I/O
Read Cycle	L	Data-Out
Read Cycle	Н	High-Z
Write Cycle	×	High-Z, Data-In
Deselected	×	High-Z

 $\textbf{Remark} \ \times : \text{don't care}$

Synchronous Truth Table

Operation	/CE	CE2	/CE2	ADV	/WE	/BWs	/CKE	CLK	I/O	Address	Note
Deselected	Н	×	×	L	×	×	L	$L\toH$	High-Z	None	1
Deselected	×	L	×	L	×	×	L	$L\toH$	High-Z	None	1
Deselected	×	×	Н	L	×	×	L	$L\toH$	High-Z	None	1
Continue Deselected	×	×	×	Н	×	×	L	$L\toH$	High-Z	None	1
Read Cycle / Begin Burst	L	Н	L	L	Н	×	L	$L\toH$	Data-Out	External	
Read Cycle / Continue Burst	×	×	×	Н	×	×	L	$L\toH$	Data-Out	Next	
Write Cycle / Begin Burst	L	Н	L	L	L	L	L	$L\toH$	Data-In	External	
Write Cycle / Continue Burst	×	×	×	Н	×	L	L	$L\toH$	Data-In	Next	
Write Cycle / Write Abort	L	Н	L	L	L	Н	L	$L\toH$	High-Z	External	
Write Cycle / Write Abort	×	×	×	Н	×	Н	L	$L\toH$	High-Z	Next	
Stall / Ignore Clock Edge	×	×	×	×	×	×	Н	$L\toH$	-	Current	2

Notes 1. Deselect status is held until new "Begin Burst" entry.

2. If an Ignore Clock Edge command occurs during a read operation, the I/O bus will remain active (Low impedance). If it occurs during a write cycle, the bus will remain High impedance. No write operation will be performed during the Ignore Clock Edge cycle.

Remarks 1. \times : don't care

2. /BWs = L means any one or more byte write enables (/BW1, /BW2, /BW3 or /BW4) are LOW.
/BWs = H means all byte write enables (/BW1, /BW2, /BW3 or /BW4) are HIGH.

Partial Truth Table for Write Enables

★ [μPD44321181]

Operation	/WE	/BW1	/BW2
Read Cycle	Н	×	×
Write Cycle / Byte 1 (I/O [1:8], I/OP1)	L	L	Н
Write Cycle / Byte 2 (I/O [9:16], I/OP2)	L	Н	L
Write Cycle / All Bytes	L	L	L
Write Abort / NOP	L	Н	Н

 $\textbf{Remark} \ \times : \text{don't care}$

[μPD44321321, μPD44321361]

Operation	/WE	/BW1	/BW2	/BW3	/BW4
Read Cycle	Н	×	×	×	×
Write Cycle / Byte 1 (I/O [1:8], I/OP1)	L	L	Н	Н	Н
Write Cycle / Byte 2 (I/O [9:16], I/OP2)	L	Н	L	Н	Н
Write Cycle / Byte 3 (I/O [17:24], I/OP3)	L	Н	Н	L	Н
Write Cycle / Byte 4 (I/O [25:32], I/OP4)	L	Н	Н	Н	L
Write Cycle / All Bytes	L	L	L	L	L
Write Abort / NOP	L	Н	Н	Н	Н

Remark ×: don't care

ZZ (Sleep) Truth Table

ZZ	Chip Status
\leq 0.2 V	Active
Open	Active
\geq V _{DD} – 0.2 V	Sleep

Electrical Specifications

Absolute Maximum Ratings

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*	Supply voltage	VDD	-A65, -A75, -A85	-0.5		+4.0	V
			-A65Y, -A75Y, -A8	35Y			
			-C75, -C85	-0.5		+3.0	
			-C75Y, -C85Y				
	Output supply voltage	VddQ		-0.5		Vdd	V
	Input voltage	VIN		-0.5 ^{Note}		V _{DD} + 0.5	V
	Input / Output voltage	Vi/o		-0.5 ^{Note}		V _{DD} Q + 0.5	V
*	Operating ambient	TA	-A65, -A75, -A85, -C75, -C85	0		70	°C
	temperature		-A65Y, -A75Y, -A85Y, -C75Y, -C8	35Y –40		+85	
	Storage temperature	Tstg		-55		+125	°C

Note -2.0 V (MIN.) (Pulse width : 2 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

*

Conditions Parameter Symbol -A65, -A75, -A85 Unit -A65Y, -A75Y, -A85Y MIN. TYP. MAX. V Supply voltage Vdd 3.135 3.3 3.465 2.5 V LVTTL Interface 2.375 Output supply voltage VddQ 2.5 2.9 V High level input voltage Vн VDDQ + 0.3 V 1.7 -0.3 Note Low level input voltage V⊫ +0.7 V 3.3 V LVTTL Interface Output supply voltage VDDQ 3.135 3.3 3.465 V VDDQ+ V High level input voltage Vн 2.0 -0.3 Note Low level input voltage V⊫ +0.8 V

Note -0.8 V (MIN.) (Pulse width : 2 ns)

Recommended DC Operating Conditions

*	Parameter	Symbol	Conditions		-C75, -C85		Unit
				-	C75Y, -C85`	Y	
				MIN.	TYP.	MAX.	
	Supply voltage	Vdd		2.375	2.5	2.625	V
	Output supply voltage	VddQ		2.375	2.5	2.625	V
	High level input voltage	Vін		1.7		V _{DD} Q + 0.3	V
	Low level input voltage	Vı∟		-0.3 ^{Note}		+0.7	V

Note -0.8 V (MIN.) (Pulse width : 2 ns)

(1/2)

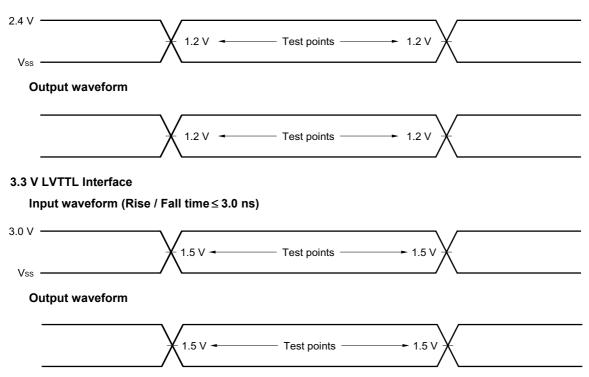
(2/2)

DC Characteristics (V_{DD} = 3.3 ± 0.165 V or 2.5 ± 0.125 V)

Parameter	Symbol	Test condition		MIN.	TYP.	MAX.	Unit
Input leakage current	lu	VIN (except ZZ, MODE) = 0 V	-2		+2	μA	
I/O leakage current	Ilo	VI/O = 0 V to VDDQ, Outputs are	-2		+2	μA	
Operating supply current	loo	Device selected,	-A65			310	mA
		Cycle = MAX.	-A65Y				
		$V_{\text{IN}} \leq V_{\text{IL}} \text{ or } V_{\text{IN}} \geq V_{\text{IH}},$	-A75, -C75			290	
		Iı/o = 0 mA	-A75Y, -C75Y				
			-A85, -C85			270	
			-A85Y, -C85Y				
Standby supply current	Isb	Device deselected, Cycle = 0			70	mA	
		$V_{IN} \leq V_{IL} \text{ or } V_{IN} \geq V_{IH}, \text{ All inputs}$					
	ISB1	Device deselected, Cycle = 0			60		
		$V_{\text{IN}} \leq 0.2 \text{ V}$ or $V_{\text{IN}} \geq V_{\text{DD}} - 0.2 \text{ V}$	or $V_{IN} \ge V_{DD} - 0.2 V$,				
		$V_{l\prime 0}\!\leq 0.2$ V, All inputs are stat					
	ISB2	Device deselected, Cycle = M			110		
		$V_{\text{IN}} \leq V_{\text{IL}} \text{ or } V_{\text{IN}} \geq V_{\text{IH}}$					
Power down supply current	Isbzz	$ZZ \ge V_{DD} - 0.2 \text{ V}, \text{ Vio} \le V_{DD}Q$	+ 0.2 V			60	mA
2.5 V LVTTL Interface							
High level output voltage	Vон	Іон = –2.0 mA		1.7			V
		Іон = –1.0 mA		2.1			
Low level output voltage	Vol	IoL = +2.0 mA				0.7	V
		lo∟= +1.0 mA				0.4	
3.3 V LVTTL Interface							
High level output voltage	Vон	Iон = -4.0 mA		2.4			V
Low level output voltage	Vol	lo∟= +8.0 mA				0.4	V

Capacitance (T_A = 25 °C, f = 1MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	V _{IN} = 0 V			6.0	pF
Input / Output capacitance	Cı/o	$V_{I/O} = 0 V$			8.0	pF
Clock input capacitance	Cclk	V _{clk} = 0 V			6.0	pF

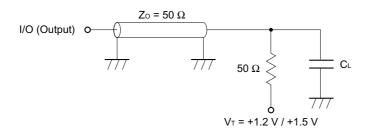

Remark These parameters are periodically sampled and not 100% tested.

AC Characteristics (V_{DD} = 3.3 ± 0.165 V or 2.5 ± 0.125 V)

AC Test Conditions

2.5 V LVTTL Interface

Input waveform (Rise / Fall time ≤ 2.4 ns)



Output load condition

CL: 30 pF

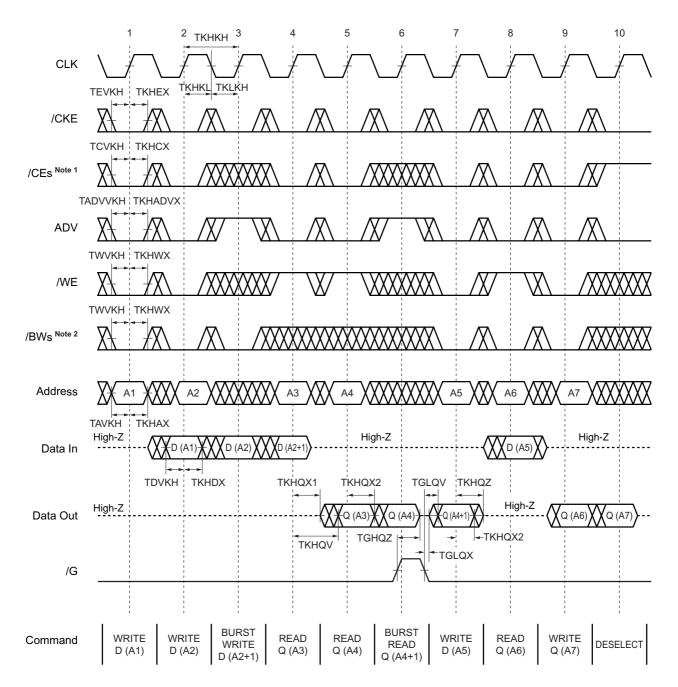
5 pF (TKHQX1, TKHQX2, TGLQX, TGHQZ, TKHQZ)

Figure External load at test

Remark CL includes capacitances of the probe and jig, and stray capacitances.

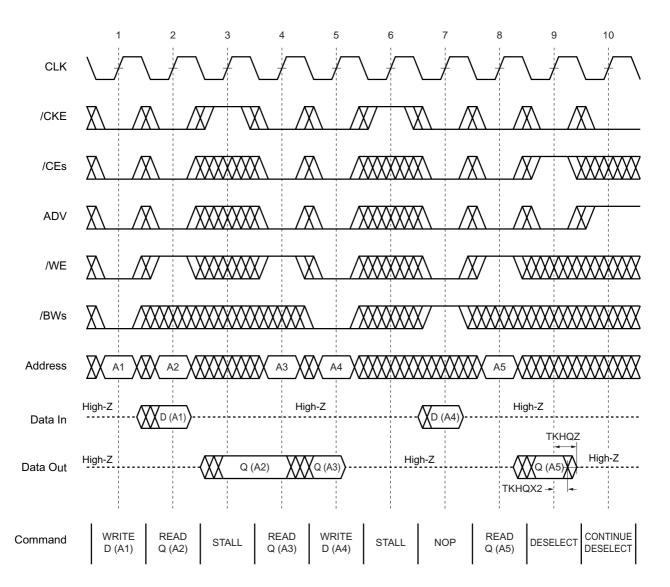
*

Read and Write Cycle

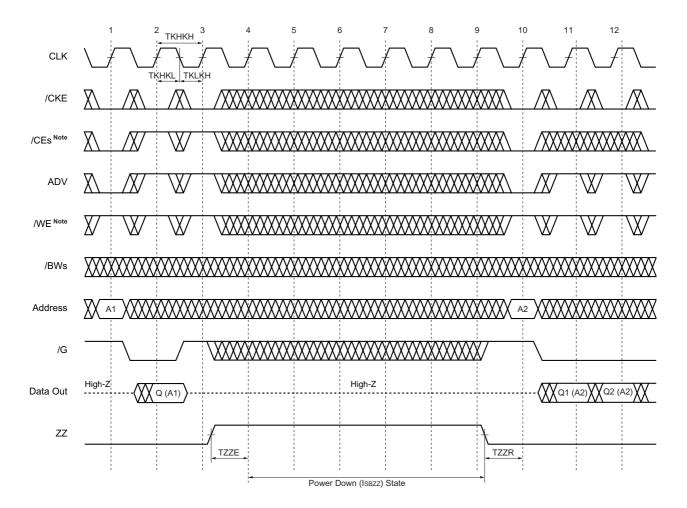

Pa	arameter	Sym	nbol	-A	.65	-A75,	-C75	-A85	, -C85	Unit	Notes
				-A6	65Y	-A75Y,	-C75Y	-A85Y	, -C85Y		
				(133	(133 MHz)		(117 MHz)		(100 MHz)		
			Alias	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Cycle time		ткнкн	TCYC	7.5	-	8.6	-	10	_	ns	
Clock access	time	TKHQV	TCD	-	6.5	-	7.5	-	8.5	ns	
Output enable	e access time	TGLQV	TOE	-	3.5	-	3.5	-	3.5	ns	
Clock high to	output active	TKHQX1	TDC1	2.5	-	2.5	_	2.5	_	ns	1, 2
Clock high to	output change	TKHQX2	TDC2	2.5	_	2.5	_	2.5	-	ns	
Output enable	e to output active	TGLQX	TOLZ	0	-	0	_	0	_	ns	1
Output disable	e to output High-Z	TGHQZ	TOHZ	0	3.5	0	3.5	0	3.5	ns	1
Clock high to output High-Z		TKHQZ	TCZ	2.5	5	2.5	5	2.5	5	ns	1, 2
Clock high pulse width		TKHKL	тсн	2.5	-	2.5	-	2.5	-	ns	
Clock low puls	se width	TKLKH	TCL	2.5	_	2.5	_	2.5	_	ns	
Setup times	Address	TAVKH	TAS	1.5	-	1.5	-	2	-	ns	
	Address advance	TADVVKH	TADVS								
	Clock enable	TEVKH	TCES								
	Chip enable	ТСУКН	TCSS								
	Data in	TDVKH	TDS								
	Write enable	TWVKH	TWS								
Hold times	Address	TKHAX	ТАН	0.5	-	0.5	-	0.5	-	ns	
	Address advance	TKHADVX	TADVH								
	Clock enable	TKHEX	TCEH								
	Chip enable	ткнсх	TCSH								
	Data in	TKHDX	TDH								
	Write enable	TKHWX	TWH								
Power down e	entry time	TZZE	TZZE	_	7.5	_	8.6	-	10	ns	
Power down r	recovery time	TZZR	TZZR	-	7.5	_	8.6	-	10	ns	

Notes 1. Transition is measured ± 200 mV from steady state.

2. To avoid bus contention, the output buffers are designed such that TKHQZ (device turn-off) is faster than TKHQX1 (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because TKHQX1 is a min. parameter that is worse case at totally different conditions (TA min., VDD max.) than TKHQZ, which is a max. parameter (worse case at TA max., VDD min.).


READ / WRITE CYCLE

NEC


- **Notes 1.** /CEs refers to /CE, CE2 and /CE2. When /CEs is LOW, /CE and /CE2 are LOW and CE2 is HIGH. When /CEs is HIGH, /CE and /CE2 are HIGH and CE2 is LOW.
 - 2. /BWs refers to /BW1, /BW2, /BW3 and /BW4. When /BWs is LOW, any one or more byte write enables (/BW1, /BW2, /BW3 or /BW4) are LOW.

NOP, STALL AND DESELECT CYCLE

NEC

POWER DOWN (ZZ) CYCLE

Note /WE or /CEs must be held HIGH at CLK rising edge (clock edge No.3 in this figure) prior to power down state entry.

JTAG Specifications

 Only the 165-pin PLASTIC FBGA package of μPD44321181, μPD44321321 and μPD44321361 support a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

Pin Name	Description
тск	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is deter-mined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

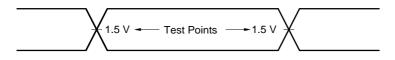
JTAG DC Characteristics (VDD = 3.3 ± 0.165 V)

(1/2)

(2/2)

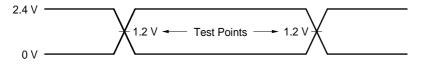
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
JTAG Input leakage current	lu	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}}$	-5.0	-	+5.0	μA	
JTAG I/O leakage current	Ιιο	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}} Q \ ,$	-5.0	-	+5.0	μA	
		Outputs disabled					
JTAG input high voltage	VIH		2.0	-	VDD+0.3	V	
JTAG input low voltage	VIL		-0.3	_	+0.5	V	
JTAG output high voltage	Vон	Iон =4 mA	2.4	_	-	V	
JTAG output low voltage	Vol	lo∟ = 8 mA	-	-	0.4	V	

JTAG DC Characteristics (VDD = 2.5 ± 0.125 V)

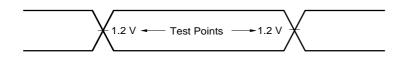

Conditions MIN. TYP. MAX. Unit Parameter Symbol Note JTAG Input leakage current -5.0 +5.0 Iц $0~V \leq V_{\text{IN}} \leq V_{\text{DD}}$ μA _ JTAG I/O leakage current Ιlo $0 V \leq V_{IN} \leq V_{DD}Q$, -5.0 +5.0 μA _ Outputs disabled JTAG input high voltage VIH 1.7 VDD+0.3 V _ +0.5 -0.3 V JTAG input low voltage VIL _ Iон = -2.0 mA 1.7 V JTAG output high voltage Vон Iон = -1.0 mA 2.1 JTAG output low voltage Vol 0.7 V loL = +2.0 mA 0.4 IoL = +1.0 mA

JTAG AC Test Conditions

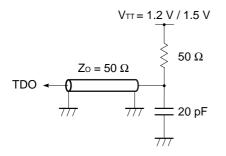
★ [-A65, -A75, -A85, -A65Y, -A75Y, -A85Y]


Input waveform (rise / fall time \leq 1 ns)

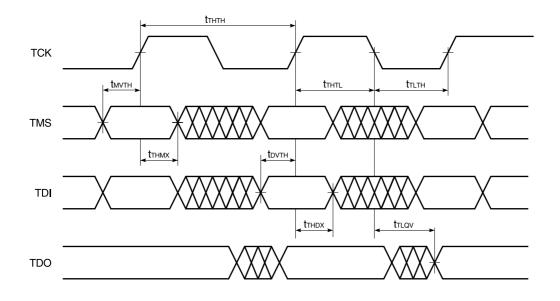
Output waveform



★ [-C75, -C85, -C75Y, -C85Y]


Input waveform (rise / fall time \leq 1 ns)

Output waveform


Output load

JTAG AC Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Clock Cycle Time (TCK)	tтнтн		100		Ι	ns	
Clock Phase Time (TCK)	tтнтц / tтцтн		40		_	ns	
Setup Time (TMS / TDI)	t мvтн / t dvтн		10		_	ns	
Hold Time (TMS / TDI)	tтнмх / tтндх		10		_	ns	
TCK Low to TDO Valid (TDO)	t⊤lqv		_		20	ns	

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The shift register bit nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	3	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	77	bit

★ ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD44321181	2M x 18	XXXX	0000 0000 0010 1000	00000010000	1
μPD44321321	1M x 32	XXXX	0000 0000 0010 1001	00000010000	1
μPD44321361	1M x 36	XXXX	0000 0000 0010 1010	00000010000	1

★ SCAN Exit Order

[µPD44321181 (2M words by 18 bits)]

L /				y 10 bits/]	
Bit no.	Signal name	Bump ID	Bit no.	Signal name	Bump ID
1	NC	6N	40	/CE2	6A
2	A19	8P	41	/BW1	5B
3	A10	8R	42	NC	5A
4	A11	9R	43	/BW2	4A
5	A13	9P	44	NC	4B
6	A14	10P	45	CE2	3B
7	A15	10R	46	/CE	3A
8	A16	11R	47	A7	2A
9	NC	11P	48	A6	2B
10	ZZ	11H	49	NC	1B
11	NC	11N	50	NC	1A
12	NC	11M	51	NC	1C
13	NC	11L	52	NC	1D
14	NC	11K	53	NC	1E
15	NC	11J	54	NC	1F
16	I/O1	10M	55	NC	1G
17	I/O2	10L	56	I/O9	2D
18	I/O3	10K	57	I/O10	2E
19	I/O4	10J	58	I/O11	2F
20	I/O5	11G	59	I/O12	2G
21	I/O6	11F	60	I/O13	1J
22	I/07	11E	61	I/O14	1K
23	I/O8	11D	62	I/O15	1L
24	I/OP1	11C	63	I/O16	1M
25	NC	10F	64	I/OP2	1N
26	NC	10E	65	NC	2K
27	NC	10D	66	NC	2L
28	NC	10G	67	NC	2M
29	A20	11A	68	NC	2J
30	NC	11B	69	A5	2R
31	A9	10A	70	MODE	1R
32	A8	10B	71	A4	3P
33	A17	9A	72	A3	3R
34	A18	9B	73	A2	4R
35	ADV	8A	74	A12	4P
36	/G	8B	75	A1	6P
37	/CKE	7A	76	A0	6R
38	/WE	7B			
39	CLK	6B			

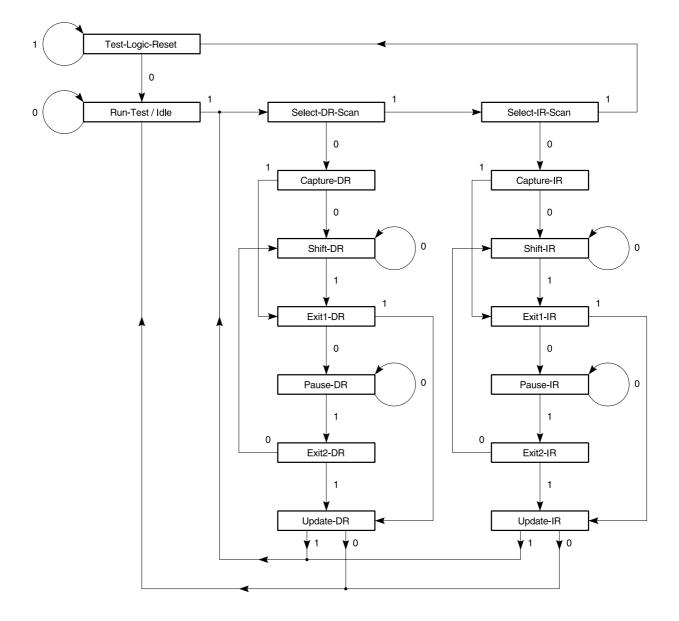
[μPD44321321 (1M words by 32 bits)] [μPD44321361 (1M words by 36 bits)]

	[μPD4432	21361 (1	M	words	by 36 bits)]
	Signal name	Bump ID		Bit no.	Signal name	Bump ID
	NC	6N		40	/CE2	6A
	A19	8P		41	/BW1	5B
	A10	8R		42	/BW2	5A
	A11	9R		43	/BW3	4A
	A13	9P		44	/BW4	4B
	A14	10P		45	CE2	3B
	A15	10R		46	/CE1	3A
	A16	11R		47	A7	2A
	NC	11P		48	A6	2B
	ZZ	11H		49	NC	1B
	I/OP1, NC	11N		50	NC	1A
	I/O1	11M		51	I/OP3, NC	1C
	I/O2	11L		52	I/O17	1D
	I/O3	11K		53	I/O18	1E
	I/O4	11J		54	I/O19	1F
	I/O5	10M		55	I/O20	1G
	I/O6	10L		56	I/O21	2D
	I/07	10K		57	I/O22	2E
	I/O8	10J		58	I/O23	2F
	I/O9	11G		59	I/O24	2G
	I/O10	11F		60	I/O25	1J
	I/O11	11E		61	I/O26	1K
	I/O12	11D		62	I/O27	1L
	I/O13	10G		63	I/O28	1M
	I/O14	10F		64	I/O29	2J
	I/O15	10E		65	I/O30	2K
	I/O16	10D		66	I/O31	2L
	I/OP2, NC	11C		67	I/O32	2M
	NC	11A		68	I/OP4, NC	1N
	NC	11B		69	A5	2R
	A9	10A		70	MODE	1R
	A8	10B		71	A4	3P
	A17	9A		72	A3	3R
	A18	9B		73	A2	4R
	ADV	8A		74	A12	4P
	/G	8B		75	A1	6P
	/CKE	7A		76	A0	6R
	/WE	7B				
_		0.0				

6B

CLK

JTAG Instructions

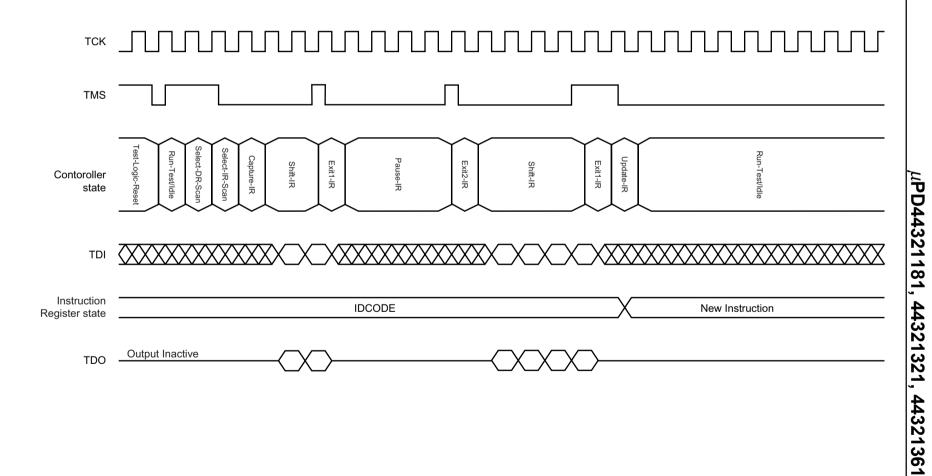

Instructions	Description
EXTEST	EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the RAM output are forced to high impedance any time the instruction is loaded.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
BYPASS	The BYPASS instruction is loaded in the instruction register when the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE	Sample is a Standard 1149.1 mandatory public instruction. When the sample instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tcH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1 compliant.
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (High impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

JTAG Instruction Cording

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	1
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	BYPASS	
1	0	0	SAMPLE	
1	0	1	BYPASS	
1	1	0	BYPASS	
1	1	1	BYPASS	

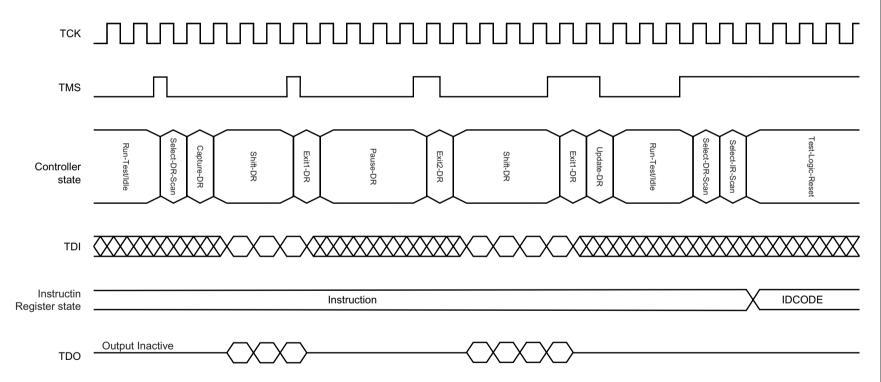
Note 1. TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.

TAP Controller State Diagram

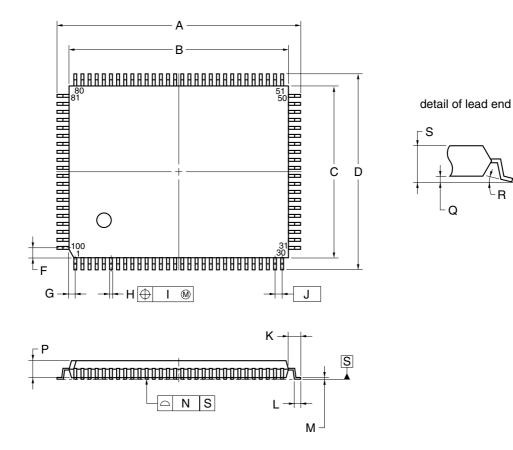

Disabling The Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.

TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a 1 k Ω resistor.


TDO should be left unconnected.

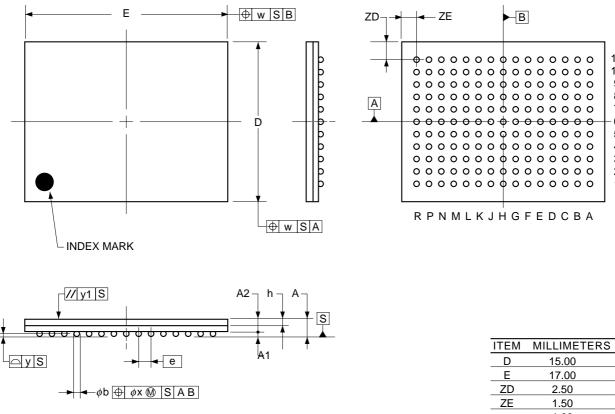
Test Logic Operation (Instruction Scan)


<u>3</u>

Test Logic (Data Scan)

Package Drawings

100-PIN PLASTIC LQFP (14x20)



ΝΟΤΕ

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	22.0±0.2
В	20.0±0.2
С	14.0±0.2
D	16.0±0.2
F	0.825
G	0.575
Н	$0.32\substack{+0.08\\-0.07}$
I	0.13
J	0.65 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	$0.17\substack{+0.06 \\ -0.05}$
N	0.10
Р	1.4
Q	0.125±0.075
R	$3^{\circ + 7^{\circ}}_{-3^{\circ}}$
S	1.7 MAX.
	S100GF-65-8ET-1

165-PIN PLASTIC FBGA (15x17)

	11.00
ZD	2.50
ZE	1.50
е	1.00
h	0.60
A	1.40
A1	0.40
A2	1.00
b	0.45
у	0.08
Χ	0.08
w	0.15
y1	0.20

This package drawing is a preliminary version. It may be changed in the future.

Recommended Soldering Condition

* Please consult with our sales offices for soldering conditions of the μ PD44321181, μ PD44321321 and μ PD44321361.

★ Types of Surface Mount Devices

μPD44321181GF	: 100-pin PLASTIC LQFP (14 x 20)
μPD44321321GF	: 100-pin PLASTIC LQFP (14 x 20)
μPD44321361GF	: 100-pin PLASTIC LQFP (14 x 20)
µPD44321181F1-FQ2	: 165-pin PLASTIC FBGA (15 x 17)
μPD44321321F1-FQ2	: 165-pin PLASTIC FBGA (15 x 17)
μPD44321361F1-FQ2	: 165-pin PLASTIC FBGA (15 x 17)

Revision History

Edition/ Page		Type of	Location	Description	
Date	This	Previous	revision		(Previous edition \rightarrow This edition)
	edition	edition			
1st edition/	Throughout	Throughout	Modification	-	Preliminary Product Information
Dec. 2002					ightarrow Preliminary Data Sheet
			Deletion	_	μPD44321161
			Addition	_	Extended operating temperature products
					(T _A = -40 to +85 °C)
	pp.2, 3	pp.2, 3	Addition	Ordering Information	Under development
					(165-pin PLASTIC FBGA (15 x 17))
	p.27	p.27	Addition	ID Register Definition	Addition of ID [27:12] part no.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

ZEROSB is a trademark of NEC Electronics Corporation.

- The information in this document is current as of December, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).