

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74F646 Octal Transceiver/Register with 3-STATE Outputs

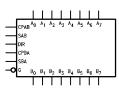
74F646 Octal Transceiver/Register with 3-STATE Outputs

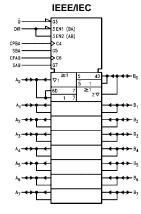
General Description

FAIRCHILD

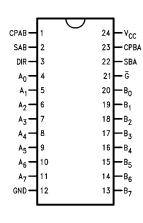
SEMICONDUCTOR

These devices consist of bus transceiver circuits with 3-STATE, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Control \overline{G} and direction pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when the enable control \overline{G} is Active LOW. In the isolation mode (control \overline{G} HIGH), A data may be stored in the B register and/or B data may be stored in the A register.


Features


- Independent registers for A and B buses
- Multiplexed real-time and stored data
- 74F646 has non-inverting data paths
- 3-STATE outputs
- 300 mil slim DIP

Ordering Code:


Order Number	Package Number	Package Description						
74F646SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide						
74F646MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide						
74F646SPC N24C 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide								
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.								

Logic Symbols

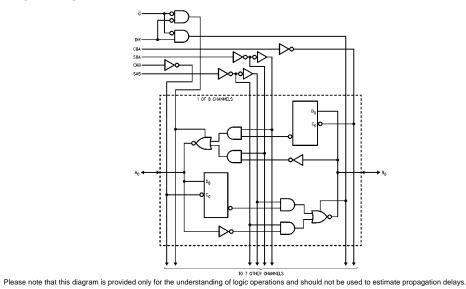
Connection Diagram

© 2004 Fairchild Semiconductor Corporation DS009580

www.fairchildsemi.com

74F646

Unit Loading/Fan Out


Din Namas	Decemination	U.L.	Input I _{IH} /I _{IL}
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}
A ₀ –A ₇	Data Register A Inputs/	3.5/1.083	70 μA/–650 μA
	3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)
B ₀ –B ₇	Data Register B Inputs/	3.5/1.083	70 μA/–650 μA
	3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)
СРАВ, СРВА	Clock Pulse Inputs	1.0/1.0	20 µA/–0.6 mA
SAB, SBA	Select Inputs	1.0/1.0	20 µA/–0.6 mA
G	Output Enable Input	1.0/1.0	20 µA/–0.6 mA
DIR	Direction Control Input	1.0/1.0	20 µA/–0.6 mA

Function Table

		Inp	uts			Data I/O	(Note 1)	Function	
G	DIR	CPAB	СРВА	SAB	SBA	A ₀ -A ₇	B ₀ –B ₇	Function	
Н	Х	H or L	H or L	Х	Х			Isolation	
н	Х	~	Х	Х	Х	Input	Input	Clock A _n Data into A Register	
Н	Х	Х	~	Х	Х			Clock B _n Data into B Register	
L	Н	Х	Х	L	Х			A _n to B _n —Real Time (Transparent Mode)	
L	н	~	Х	L	Х	Input	Output	Clock A _n Data into A Register	
L	н	H or L	х	н	Х			A Register to B _n (Stored Mode)	
L	н	~	х	н	Х			Clock An Data into A Register and Output to Bn	
L	L	Х	Х	Х	L			B _n to A _n —Real Time (Transparent Mode)	
L	L	Х	~	Х	L	Output	Input	Clock B _n Data into B Register	
L	L	Х	H or L	Х	н			B Register to A _n (Stored Mode)	
L	L	Х	~	Х	н			Clock B_n Data into B Register and Output to A_n	
H = H	H = HIGH Voltage Level L = LOW Voltage Level X = Irrelevant ~ = LOW-to-HIGH Transition								

H = HIGH Voltage LevelL = LOW Voltage LevelX = Irrelevant \sim = LOW-to-HIGH TransitionNote 1: The data output functions may be enabled or disabled by various signals at the \overline{G} and DIR Inputs. Data input functions are always enabled;
i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 74F646

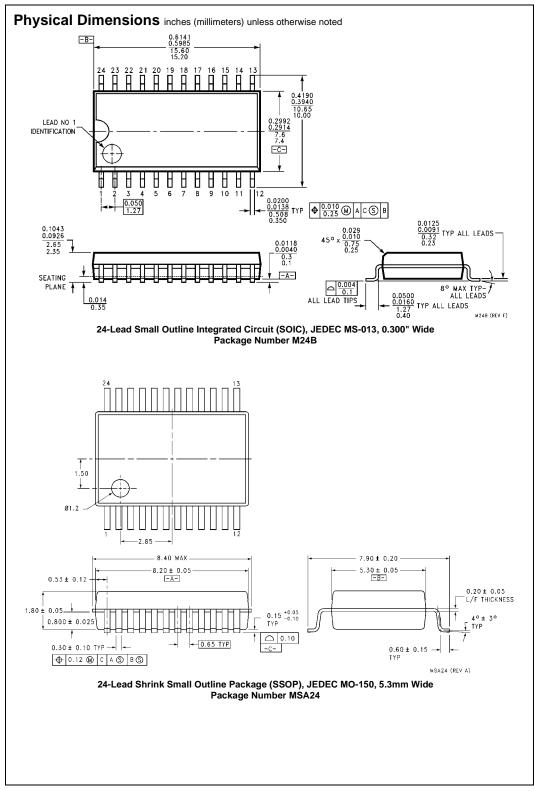
0°C to +70°C +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

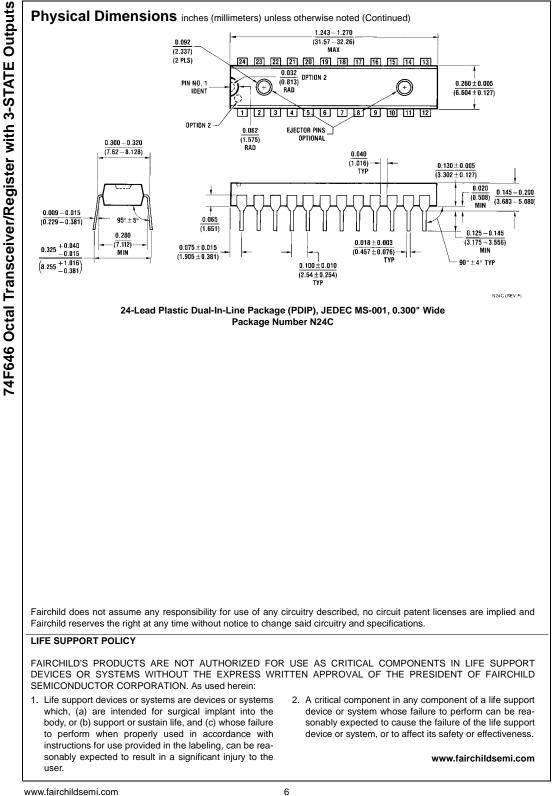
DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)
V _{OH}	Output HIGH 10% V _{CC} Voltage	2.0			V	Min	I _{OH} = -15 mA (A _n , B _n)
V _{OL}	Output LOW 10% V _{CC} Voltage			0.55	V	Min	$I_{OL} = 64 \text{ mA} (A_n, B_n)$
IIH	Input HIGH Current			5.0	μΑ	Max	V _{IN} = 2.7V (Non I/O Pins)
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μΑ	Max	V _{IN} = 7.0V (Non I/O Pins)
I _{BVIT}	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	V _{IN} = 5.5V (A _n , B _n)
I _{CEX}	Output HIGH Leakage Current			50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V (Non I/O Pins)
I _{IH} + I _{OZH}	Output Leakage Current			70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$
$I_{IL} + I_{OZL}$	Output Leakage Current			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$
I _{OS}	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	$V_{OUT} = 5.25V$
ICCH	Power Supply Current			135	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			150	mA	Max	V _O = LOW
I _{CCZ}	Power Supply Current			150	mA	Max	V _O = HIGH Z


74F646

AC Electrical Characteristics

Symbol			+25°C	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		$T_A = 0^{\circ}C$ to $+70^{\circ}C$			
	Parameter	V _{CC} =	+ 5.0V	V _{CC} =	+5.0V	V _{CC} =	Units		
	i arameter	C _L =	50 pF	C _L =	50 pF	$C_L = 50 \ pF$			
		Min	Max	Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	90		75		90		MHz	
t _{PLH}	Propagation Delay	2.0	7.0	2.0	8.5	2.0	8.0		
t _{PHL}	Clock to Bus	2.0	8.0	2.0	9.5	2.0	9.0	ns	
t _{PLH}	Propagation Delay	1.0	7.0	1.0	8.0	1.0	7.5	ns	
t _{PHL}	Bus to Bus	1.0	6.5	1.0	8.0	1.0	7.0	115	
t _{PLH}	Propagation Delay	2.0	8.5	2.0	11.0	2.0	9.5	200	
t _{PHL}	SBA or SAB to A or B	2.0	8.0	2.0	10.0	2.0	9.0	ns	
t _{PZH}	Enable Time	2.0	8.5	2.0	10.0	2.0	9.0	ns	
t _{PZL}	OE to A or B	2.0	12.0	2.0	13.5	2.0	12.5	115	
t _{PHZ}	Disable Time	1.0	7.5	1.0	9.0	1.0	8.5	ns	
t _{PLZ}	OE to A or B	2.0	9.0	2.0	11.0	2.0	9.5	115	
t _{PZH}	Enable Time	2.0	14.0	2.0	16.0	2.0	15.0	ns	
t _{PZL}	DIR to A or B	2.0	13.0	2.0	15.0	2.0	14.0	115	
t _{PHZ}	Disable Time	1.0	9.0	1.0	10.0	1.0	9.5	ns	
t _{PLZ}	DIR to A or B	2.0	11.0	2.0	12.0	2.0	11.5	ns	


AC Operating Requirements

		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C$	c to +125°C	$T_A = 0^{\circ}C$ to $+70^{\circ}C$			
Symbol	Parameter			$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units	
		Min	Max	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	5.0		5.0		5.0			
t _S (L)	Bus to Clock	5.0		5.0		5.0		ns	
t _H (H)	Hold Time, HIGH or LOW	2.0		2.5		2.0		ns	
t _H (L)	Bus to Clock	2.0		2.5		2.0		115	
t _W (H)	Clock Pulse Width	5.0		5.0		5.0		ns	
t _W (L)	HIGH or LOW	5.0		5.0		5.0		115	

www.fairchildsemi.com

74F646

